• Title/Summary/Keyword: higher order theory

Search Result 833, Processing Time 0.027 seconds

Elastic wave characteristics of graphene nanoplatelets reinforced composite nanoplates

  • Karami, Behrouz;Gheisari, Parastoo;Nazemosadat, Seyed Mohammad Reza;Akbari, Payam;Shahsavari, Davood;Naghizadeh, Matin
    • Structural Engineering and Mechanics
    • /
    • v.74 no.6
    • /
    • pp.809-819
    • /
    • 2020
  • For the first time, the influence of in-plane magnetic field on wave propagation of Graphene Nano-Platelets (GNPs) polymer composite nanoplates is investigated here. The impact of three- parameter Kerr foundation is also considered. There are two different reinforcement distribution patterns (i.e. uniformly and non-uniformly) while the material properties of the nanoplate are estimated through the Halpin-Tsai model and a rule of mixture. To consider the size-dependent behavior of the structure, Eringen Nonlocal Differential Model (ENDM) is utilized. The equations of wave motion derived based on a higher-order shear deformation refined theory through Hamilton's principle and an analytical technique depending on Taylor series utilized to find the wave frequency as well as phase velocity of the GNPs reinforced nanoplates. A parametric investigation is performed to determine the influence of essential phenomena, such as the nonlocality, GNPs conditions, Kerr foundation parameters, and wave number on the both longitudinal and flexural wave characteristics of GNPs reinforced nanoplates.

Thermal buckling properties of zigzag single-walled carbon nanotubes using a refined nonlocal model

  • Semmah, Abdelwahed;Beg, O. Anwar;Mahmoud, S.R.;Heireche, Houari;Tounsi, Abdelouahed
    • Advances in materials Research
    • /
    • v.3 no.2
    • /
    • pp.77-89
    • /
    • 2014
  • In the present article, the thermal buckling of zigzag single-walled carbon nanotubes (SWCNTs) is studied using a nonlocal refined shear deformation beam theory and Von-Karman geometric nonlinearity. The model developed simulates both small scale effects and higher-order variation of transverse shear strain through the depth of the nanobeam. Furthermore the present formulation also accommodates stress-free boundary conditions on the top and bottom surfaces of the nanobeam. A shear correction factor, therefore, is not required. The equivalent Young's modulus and shear modulus for zigzag SWCNTs are derived using an energy-equivalent model. The present study illustrates that the thermal buckling properties of SWCNTs are strongly dependent on the scale effect and additionally on the chirality of zigzag carbon nanotube. Some illustrative examples are also presented to verify the present formulation and solutions. Good agreement is observed.

Dynamic instability response in nanocomposite pipes conveying pulsating ferrofluid flow considering structural damping effects

  • Esmaeili, Hemat Ali;Khaki, Mehran;Abbasi, Morteza
    • Structural Engineering and Mechanics
    • /
    • v.68 no.3
    • /
    • pp.359-368
    • /
    • 2018
  • This paper deals with the dynamic stability of nanocomposite pipes conveying pulsating ferrofluid. The pipe is reinforced by carbon nanotubes (CNTs) where the agglomeration of CNTs are considered based on Mori-Tanaka model. Due to the existence of CNTs and ferrofluid flow, the structure and fluid are subjected to axial magnetic field. Based on Navier-Stokes equation and considering the body forced induced by magnetic field, the external force of fluid to the pipe is derived. For mathematical modeling of the pipe, the first order shear deformation theory (FSDT) is used where the energy method and Hamilton's principle are used for obtaining the motion equations. Using harmonic differential quadrature method (HDQM) and Bolotin's method, the motion equations are solved for calculating the excitation frequency and dynamic instability region (DIR) of the structure. The influences of different parameters such as volume fraction and agglomeration of CNTs, magnetic field, structural damping, viscoelastic medium, fluid velocity and boundary conditions are shown on the DIR of the structure. Results show that with considering agglomeration of CNTs, the DIR shifts to the lower excitation frequencies. In addition, the DIR of the structure will be happened at higher excitation frequencies with increasing the magnetic field.

Progressive failure of symmetrically laminated plates under uni-axial compression

  • Singh, S.B.;Kumar, Ashwini;Iyengar, N.G.R.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.4
    • /
    • pp.433-450
    • /
    • 1997
  • The objective of this work is to predict the failure loads, associated maximum transverse displacements, locations and the modes of failure, including the onset of delamination, of thin, flat, square symmetric laminates under the action of uni-axial compression. Two progressive failure analyses, one using Hashin criterion and the other using Tensor polynomial criteria, are used in conjunction with the finite element method. First order shear deformation theory and geometric nonlinearity in the von Karman sense have been employed. Five different types of lay-up sequence are considered for laminates with all edges simply supported. In addition, two boundary conditions, one with all edges fixed and other with mixed boundary conditions for $(+45/-45/0/90)_{2s}$ quasi-isotropic laminate have also been considered to study the effect of boundary restraints on the failure loads and the corresponding modes of failure. A comparison of linear and nonlinear results is also made for $({\pm}45/0/90)_{2s}$ quasi-isotropic laminate. It is observed that the maximum difference between the failure loads predicted by various criteria depend strongly on the laminate lay-ups and the flexural boundary restraints. Laminates with clamped edges are found to be more susceptible to failure due to the transverse shear and delamination, while those with the simply supported edges undergo total collapse at a load slightly higher than the fiber failure load.

Fashion Designer Competency Modeling (패션디자이너 역량모델링 구축)

  • Jang, Namkyung
    • Fashion & Textile Research Journal
    • /
    • v.20 no.4
    • /
    • pp.369-378
    • /
    • 2018
  • This study started with the need for transition to competency-based education as well as the witness of fast changes in fashion industry's job environment. The goals of this study were (1) to explore fashion designers' competencies that are necessary for a successful careers in global fashion industry, and (2) to establish fashion designer competency model. In-depth individual interviews were conducted with 15 participants who have charged for design department and moreover have shown high performance in national, licence or designer brands in Korea fashion industry. Grounded theory was adopted to analyze data. As a result of analysis, the 4 core competencies emerged: problem-solving, research, inter-personal, and self-development. Each core competency has sub-competencies. Creativity, commerciality, control, decision making were sub-competencies for the problem-solving competency. Information management, innovation understanding & application, trend analysis & forecasting were sub-competencies for the research competency. Consumer, inside company, and outside company relationships were sub-competencies for the inter-personal competency. Self-awareness, self-management, expertise were sub-competencies for the self-development competency. In order to acquire these competencies, knowledge (academic, practical, multi-discipline), skills (sense, analysis, synthesis, communication), and attitude (interest, enjoyment, perseverance, personality) were essential. Based on these findings, implications for university fashion design education and further research areas were suggested.

The Impact of Supplier Induced Demand on Increase in Medical Aid Expenditure (의료급여비용 증가에 공급자 유인효과가 미치는 영향)

  • Shin, Hyunwoung;Yoon, Jangho;Noh, Yunhong;Yeo, Ji-Young
    • Health Policy and Management
    • /
    • v.24 no.1
    • /
    • pp.13-23
    • /
    • 2014
  • Background: A need arises to efficiently control health expenditure for medical aid due to a sharp increase in medical aid expenditure. This study experimently analyzes the impact of physician behavior on medical use for medical aid beneficiaries using supplier induced demand (SID) theory. Methods: This study looks into analyze SID effect using expenditure factor analysis of medical aid for the years between 2003 and 2010 in comparison with health insurance. Moreover, this study analyzes the existence and scale of SID using econometrics modeling with panel data on 16 cities and provinces's health expenditure data for medical aid from 2003 1/4 to 2010 4/4. Results: This study finds that the growth rate of visit days per capita and treatment amount per visit days for medical aid is higher than health insurance. Furthermore, the result of econometrics modeling analysis shows the existence of SID in general hospital, hospital, clinic, oriental clinic. Conclusion: In order to efficiently control expenditure for medical aid, it is required to reinforce macro polices such as the introduction of 'target management' and micro policies such as the strengthen of management on medical institutes in the perspective of suppliers as well as regulations of demanders.

A Study on the Color Collection of Real Image Using the Triplicated Piecewise Bezier Cubic-Curve (3중첩 구간적 베지어 3차 곡선을 이용한 실사 영상의 컬러 보정에 관한 연구)

  • 권희용;이지영
    • The Journal of Information Technology
    • /
    • v.5 no.1
    • /
    • pp.99-111
    • /
    • 2002
  • Due to non-linear characteristics of color spaces, color corrections using linear conversions for real image near color reappearance causes color distortions. In order to overcome this problem, the Bezier Curve, constructed with a set of arbitrary plane in the linear theory, has been used. However, the Bezier Curve increases in proportion to the number of data points, resulting in higher computational complexities. This paper attempts to use a Triplicated Piecewise Bezier Cubic-Curve (TPBC-Curve) of which the degree is cubic on the whole interval while keeping the characteristics of Bezier Curves. By Comparing the TPBC-Curve with Bezier Curve of 20 degree, the paper not only reduces the distortion during color correction but also lessens the relative increase of workload that is caused by the color correction in a small zone.

  • PDF

A Batch Sizing Model at a Bottleneck Machine in Production Systems (생산라인의 병목공정에서 배치크기 결정 모형)

  • Koo, Pyung-Hoi;Koh, Shie-Gheun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.2
    • /
    • pp.246-253
    • /
    • 2007
  • All of the machines in a production line can be classified into bottleneck and non-bottleneck machines. A bottleneck is a resource whose capacity limits the throughput of the whole production facility. This paper addresses a batch sizing problem at the bottleneck machine. Traditionally, most batch sizing decisions have been made based on the EOQ (economic order quantity) model where setup and inventory costs are considered while throughput rate is assumed to be given. However, since batch size affects the capacity of the bottleneck machine, the throughput rate may not be constant. As the batch size increases, the frequency of the setup decreases. The saved setup time can be transferred to processing time, which results in higher throughput. But, the larger batch size may also result in longer lead time and larger WIP inventory level. This paper presents an alternative method to determine batch size at the bottleneck machine in a manufacturing line. A linear search algorithm is introduced to find optimal throughput rate and batch size at the same time. Numerical examples are provided to see how the proposed method works and to investigate the effects of some parameters.

Differential cubature method for vibration analysis of embedded FG-CNT-reinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions

  • Madani, Hamid;Hosseini, Hadi;Shokravi, Maryam
    • Steel and Composite Structures
    • /
    • v.22 no.4
    • /
    • pp.889-913
    • /
    • 2016
  • Vibration analysis of embedded functionally graded (FG)-carbon nanotubes (CNT)-reinforced piezoelectric cylindrical shell subjected to uniform and non-uniform temperature distributions are presented. The structure is subjected to an applied voltage in thickness direction which operates in control of vibration behavior of system. The CNT reinforcement is either uniformly distributed or functionally graded (FG) along the thickness direction indicated with FGV, FGO and FGX. Effective properties of nano-composite structure are estimated through Mixture low. The surrounding elastic foundation is simulated with spring and shear constants. The material properties of shell and elastic medium constants are assumed temperature-dependent. The motion equations are derived using Hamilton's principle applying first order shear deformation theory (FSDT). Based on differential cubature (DC) method, the frequency of nano-composite structure is obtained for different boundary conditions. A detailed parametric study is conducted to elucidate the influences of external applied voltage, elastic medium type, temperature distribution type, boundary conditions, volume percent and distribution type of CNT are shown on the frequency of system. In addition, the mode shapes of shell for the first and second modes are presented for different boundary conditions. Numerical results indicate that applying negative voltage yields to higher frequency. In addition, FGX distribution of CNT is better than other considered cases.

H$_{\infty}$ Control System for Tandem Cold Mills with Roll Eccentricity

  • Kim, Seung-Soo;Kim, Jong-Shik;Yang, Soon-Yong;Lee, Byung-Ryong;Ahn, Kyung-Kwan
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.45-54
    • /
    • 2004
  • In order to meet the requirement for higher thickness accuracy in cold rolling processes, it is strongly desired to have high performance in control units. To meet this requirement, we have considered an output regulating control system with a roll-eccentricity estimator for each rolling stand of tandem cold mills. Considering entry thickness variation as well as roll eccentricity as the major disturbances, a synthesis of multivariable control systems is presented based on H$\sub$$\infty$/ control theory, which can reflect the knowledge of input direction and spectrum of disturbance signals on the design. Then, to reject roll eccentricity effectively, a weight function having some poles on the imaginary axis is introduced. This leads to a non-standard H_ control problem, and the design procedures for solving this problem are analytically presented. The effectiveness of the proposed control method is evaluated through computer simulations and compared to that of the conventional LQ control and feedforward control methods for roll eccentricity.