• Title/Summary/Keyword: higher order panel method

Search Result 66, Processing Time 0.018 seconds

Formability of Aluminum 5182-Polypropylene Sandwich Panel for Automotive Application (자동차용 알루미늄 5185-폴리프로필렌 샌드위치 판재의 성형성)

  • Kim, Kee-Joo;Jeong, Hyo-Tae;Sohn, Il-Seon;Kim, Cheol-Woong;Kim, Joong-Bae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.175-181
    • /
    • 2007
  • The objective of this study was to develop formability evaluation techniques in order to apply aluminum sandwich panel for automotive body parts. For this purpose, newly adopting formability evaluation (using limit dome height and plane strain test) was carried out in order to secure the fundamental data for the measurement of sheet metal forming and the establishment of optimum forming conditions of the aluminum sandwich panel. The results showed that there were good agreements between the old formability evaluation method and the new method which was more simplified than that of old one. From the results of these formability evaluation, the formability of sandwich panel was higher than that of aluminum alloy sheet alone which was the skin component for the sandwich panel. Also, it was found that sandwich panel could reduce the weight and could have the same flexural rigidity simultaneously when it was compared to the automotive steel sheet.

Numerical Experimentation of a 2-D B-Spline Higher Order Panel Method (2차원 B-스플라인 기저 고차패널법의 수치실험)

  • Chung-Ho Cho;Chang-Sup Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.3
    • /
    • pp.27-36
    • /
    • 2000
  • A higher order panel method based on B-spline representation for both the geometry and the velocity potential is developed for the solution of the flow around two-dimensional lifting bodies. Unlike Lee/Kerwin, who placed multiple control points on each panel and solved the overdetermined system of equation by the least square approach, the present method places only as many number of control points as required by the unknowns of the problem. Especially, a null pressure jump Kutta condition at the trailing edge is found to be effective in stabilizing the solution process and in predicting the correct solution. The new approach, is validated to be accurate through comparison with the analytic solution for a 2-D airfoil and to be less time-consuming due to fewer number of panels required than that used in Lee/Kerwin.

  • PDF

Stochastic hygrothermoelectromechanical loaded post buckling analysis of piezoelectric laminated cylindrical shell panel

  • Lal, Achchhe;Saidane, Nitesh;Singh, B.N.
    • Smart Structures and Systems
    • /
    • v.9 no.6
    • /
    • pp.505-534
    • /
    • 2012
  • The present work deals with second order statistics of post buckling response of piezoelectric laminated composite cylindrical shell panel subjected to hygro-thermo-electro-mechanical loading with random system properties. System parameters such as the material properties, thermal expansion coefficients and lamina plate thickness are assumed to be independent of the temperature and electric field and modeled as random variables. The piezoelectric material is used in the forms of layers surface bonded on the layers of laminated composite shell panel. The mathematical formulation is based on higher order shear deformation shell theory (HSDT) with von-Karman nonlinear kinematics. A efficient $C^0$ nonlinear finite element method based on direct iterative procedure in conjunction with a first order perturbation approach (FOPT) is developed for the implementation of the proposed problems in random environment and is employed to evaluate the second order statistics (mean and variance) of the post buckling load of piezoelectric laminated cylindrical shell panel. Typical numerical results are presented to examine the effect of various environmental conditions, amplitude ratios, electrical voltages, panel side to thickness ratios, aspect ratios, boundary conditions, curvature to side ratios, lamination schemes and types of loadings with random system properties. It is observed that the piezoelectric effect has a significant influence on the stochastic post buckling response of composite shell panel under various loading conditions and some new results are presented to demonstrate the applications of present work. The results obtained using the present solution approach is validated with those results available in the literature and also with independent Monte Carlo Simulation (MCS).

Numerical Solution of the Radiation Problem by the B-Spline Higher Order Kelvin Panel Method for a Half-Immersed Cylinder in Wave and Current

  • Hong, Do-Chun
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.184-188
    • /
    • 2000
  • The improved Green integral equation of overdetermined type applied to the radiation problem for an oscillating cylinder in the presence of weak current is presented. A two-dimensional Green function for the weak current is also presented. The present numerical solution of the Improved Green integral equation by the B-spline higher order Kelvin panel method is shown to be free of irregular frequencies which are present in the usual Green integral equation.

  • PDF

Instability and vibration analyses of FG cylindrical panels under parabolic axial compressions

  • Kumar, Rajesh;Dey, Tanish;Panda, Sarat K.
    • Steel and Composite Structures
    • /
    • v.31 no.2
    • /
    • pp.187-199
    • /
    • 2019
  • This paper presents the semi-analytical development of the dynamic instability behavior and the dynamic response of functionally graded (FG) cylindrical shallow shell panel subjected to different type of periodic axial compression. First, in prebuckling analysis, the stresses distribution within the panels are determined for respective loading type and these stresses are used to study the dynamic instability behavior and the dynamic response. The prebuckling stresses within the shell panel are the same as applied in-plane edge loading for the case of uniform and linearly varying loadings. However, this is not true for the case of parabolic loadings. The parabolic edge loading produces all the stresses (${\sigma}_{xx}$, ${\sigma}_{yy}$ and ${\tau}_{xy}$) within the FG cylindrical panel. These stresses are evaluated by minimizing the membrane energy via Ritz method. Using these stresses the partial differential equations of FG cylindrical panel are formulated by applying Hamilton's principal assuming higher order shear deformation theory (HSDT) and von-$K{\acute{a}}rm{\acute{a}}n$ non-linearity. The non-linear governing partial differential equations are converted into a set of Mathieu-Hill equations via Galerkin's method. Bolotin method is adopted to trace the boundaries of instability regions. The linear and non-linear dynamic responses in stable and unstable region are plotted to know the characteristics of instability regions of FG cylindrical panel. Moreover, the non-linear frequency-amplitude responses are obtained using Incremental Harmonic Balance (IHB) method.

Application of the Weak-Scatterer Hypothesis to the Wave-Body Interaction Problems

  • Kim, Yong-hwan;Sclavounos, Paul-D.
    • Journal of Ship and Ocean Technology
    • /
    • v.4 no.2
    • /
    • pp.1-12
    • /
    • 2000
  • The present study concentrates on the weak-scatterer hypothesis for the nonlinear wave-body interaction problems. In this method, the free surface boundary conditions are linearized on the incoming wave profile and the exact body motion is applied. The considered problems are the diffraction problem near a circular cylinder and the ship response in oblique waves. The numerical method of solution is a Rankine panel method. The Rankine panel method of this study adopts the higher-order B spline basis function for the approximation of physical variables. A modified Euler scheme is applied for the time stepping, which has neutral stability. The computational result shows some nonlinear behaviors of disturbance waves and wave forces. Moreover, the ship response shows very close results to experimental data.

  • PDF

Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel

  • Kar, Vishesh R.;Panda, Subrata K.
    • Steel and Composite Structures
    • /
    • v.18 no.3
    • /
    • pp.693-709
    • /
    • 2015
  • In this article, nonlinear free vibration behaviour of functionally graded spherical panel is analysed. A nonlinear mathematical model is developed based on higher order shear deformation theory for shallow shell by taking Green-Lagrange type of nonlinear kinematics. The material properties of functionally graded material are assumed to be varying continuously in transverse direction and evaluated using Voigt micromechanical model in conjunction with power-law distribution. The governing equation of the shell panel is obtained using Hamilton's principle and discretised with the help of nonlinear finite element method. The desired responses are evaluated through a direct iterative method. The present model has been validated by comparing the frequency ratio (nonlinear frequency to linear frequency) with those available published literatures. Finally, the effect of geometrical parameters (curvature ratio, thickness ratio, aspect ratio and support condition), power law indices and amplitude of vibration on the frequency ratios of spherical panel have been discussed through numerical experimentations.

Nonlinear finite element solutions of thermoelastic flexural strength and stress values of temperature dependent graded CNT-reinforced sandwich shallow shell structure

  • Mehar, Kulmani;Panda, Subrata K.
    • Structural Engineering and Mechanics
    • /
    • v.67 no.6
    • /
    • pp.565-578
    • /
    • 2018
  • This research article reported the nonlinear finite solutions of the nonlinear flexural strength and stress behaviour of nano sandwich graded structural shell panel under the combined thermomechanical loading. The nanotube sandwich structural model is derived mathematically using the higher-order displacement polynomial including the full geometrical nonlinear strain-displacement equations via Green-Lagrange relations. The face sheets of the sandwich panel are assumed to be carbon nanotube-reinforced polymer composite with temperature dependent material properties. Additionally, the numerical model included different types of nanotube distribution patterns for the sandwich face sheets for the sake of variable strength. The required equilibrium equation of the graded carbon nanotube sandwich structural panel is derived by minimizing the total potential energy expression. The energy expression is further solved to obtain the deflection values (linear and nonlinear) via the direct iterative method in conjunction with finite element steps. A computer code is prepared (MATLAB environment) based on the current higher-order nonlinear model for the numerical analysis purpose. The stability of the numerical solution and the validity are verified by comparing the published deflection and stress values. Finally, the nonlinear model is utilized to explore the deflection and the stresses of the nanotube-reinforced (volume fraction and distribution patterns of carbon nanotube) sandwich structure (different core to face thickness ratios) for the variable type of structural parameter (thickness ratio, aspect ratio, geometrical configurations, constraints at the edges and curvature ratio) and unlike temperature loading.

Evaluation of vibroacoustic responses of laminated composite sandwich structure using higher-order finite-boundary element model

  • Sharma, Nitin;Mahapatra, Trupti R.;Panda, Subrata K.;Mehar, Kulmani
    • Steel and Composite Structures
    • /
    • v.28 no.5
    • /
    • pp.629-639
    • /
    • 2018
  • In this paper, the vibroacoustic responses of baffled laminated composite sandwich flat panel structure under the influence of harmonic excitation are studied numerically using a novel higher-order coupled finite-boundary element model. A numerical scheme for the vibrating plate has been developed in the frame work of the higher-order mid-plane kinematics and the eigen frequencies are obtained by employing suitable finite element steps. The acoustic responses are then computed by solving the Helmholtz wave equation using boundary element method coupled with the structural finite elements. The proposed scheme has been implemented via an own MATLAB base code to compute the desired responses. The validity of the present model is established from the conformance of the current natural frequencies and the radiated sound power with the available benchmark solutions. The model is further utilized to scrutinize the influence of core-to-face thickness ratio, modular ratio, lamination scheme and the support condition on the sound radiation characteristics of the vibrating sandwich flats panel. It can be concluded that the present scheme is not only accurate but also efficient and simple in providing solutions of the coupled vibroacoustic response of laminated composite sandwich plates.

General equations for free vibrations of thick doubly curved sandwich panels with compressible and incompressible core using higher order shear deformation theory

  • Nasihatgozar, M.;Khalili, S.M.R.;Fard, K. Malekzadeh
    • Steel and Composite Structures
    • /
    • v.24 no.2
    • /
    • pp.151-176
    • /
    • 2017
  • This paper deals with general equations of motion for free vibration analysis response of thick three-layer doubly curved sandwich panels (DCSP) under simply supported boundary conditions (BCs) using higher order shear deformation theory. In this model, the face sheets are orthotropic laminated composite that follow the first order shear deformation theory (FSDT) based on Rissners-Mindlin (RM) kinematics field. The core is made of orthotropic material and its in-plane transverse displacements are modeled using the third order of the Taylor's series extension. It provides the potentiality for considering both compressible and incompressible cores. To find these equations and boundary conditions, Hamilton's principle is used. Also, the effect of trapezoidal shape factor for cross-section of curved panel element ($1{\pm}z/R$) is considered. The natural frequency parameters of DCSP are obtained using Galerkin Method. Convergence studies are performed with the appropriate formulas in general form for three-layer sandwich plate, cylindrical and spherical shells (both deep and shallow). The influences of core stiffness, ratio of core to face sheets thickness and radii of curvatures are investigated. Finally, for the first time, an optimum range for the core to face sheet stiffness ratio by considering the existence of in-plane stress which significantly affects the natural frequencies of DCSP are presented.