DOI QR코드

DOI QR Code

Evaluation of vibroacoustic responses of laminated composite sandwich structure using higher-order finite-boundary element model

  • Sharma, Nitin (School of Mechanical Engineering, KIIT) ;
  • Mahapatra, Trupti R. (Department of Production Engineering, VSSUT) ;
  • Panda, Subrata K. (Department of Mechanical Engineering, NIT) ;
  • Mehar, Kulmani (Department of Mechanical Engineering, NIT)
  • Received : 2018.03.18
  • Accepted : 2018.06.23
  • Published : 2018.09.10

Abstract

In this paper, the vibroacoustic responses of baffled laminated composite sandwich flat panel structure under the influence of harmonic excitation are studied numerically using a novel higher-order coupled finite-boundary element model. A numerical scheme for the vibrating plate has been developed in the frame work of the higher-order mid-plane kinematics and the eigen frequencies are obtained by employing suitable finite element steps. The acoustic responses are then computed by solving the Helmholtz wave equation using boundary element method coupled with the structural finite elements. The proposed scheme has been implemented via an own MATLAB base code to compute the desired responses. The validity of the present model is established from the conformance of the current natural frequencies and the radiated sound power with the available benchmark solutions. The model is further utilized to scrutinize the influence of core-to-face thickness ratio, modular ratio, lamination scheme and the support condition on the sound radiation characteristics of the vibrating sandwich flats panel. It can be concluded that the present scheme is not only accurate but also efficient and simple in providing solutions of the coupled vibroacoustic response of laminated composite sandwich plates.

Keywords

References

  1. Alijani, F. and Amabili, M. (2014), "Non-linear vibrations of shells : A literature review from 2003 to 2013", Int. J. Non. Linear. Mech., 58, 233-257. https://doi.org/10.1016/j.ijnonlinmec.2013.09.012
  2. Atalla, N. and Sgard, F. (2015), Finite Element and Boundary Methods in Structural Acoustics and Vibration. CRC Press, Taylor and Francis Group, Boca Raton, FL, USA.
  3. Atalla, N., Nicolas, J. and Gauthier, C. (1996), "Acoustic radiation of an unbaffled vibrating plate with general elastic boundary conditions", J. Acoust. Soc. Am., 99(3), 1484-1494. https://doi.org/10.1121/1.414727
  4. Bedford, A. (1985), Hamilton's Principle in Continuum Mechanics, Pitman research notes in mathematics series, Pitman Advanced Publishing Program.
  5. Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Beg, O.A. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos. Part B, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
  6. Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., Int. J., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
  7. Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A. (2014), "A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates", Int. J. Comput. Methods, 11(6), 1350082. https://doi.org/10.1142/S0219876213500825
  8. Bui, T.Q., Khosravifard, A., Zhang, C., Hematiyan, M.R. and Golub, M.V. (2013), "Dynamic analysis of sandwich beams with functionally graded core using a truly meshfree radial point interpolation method", Eng. Struct., 47, 90-104. https://doi.org/10.1016/j.engstruct.2012.03.041
  9. Bui, T.Q., Do, T. Van, Ton, L.H.T., Doan, D.H., Tanaka, S., Pham, D.T., Nguyen-Van, T.-A., Yu, T. and Hirose, S. (2016), "On the high temperature mechanical behaviors analysis of heated functionally graded plates using FEM and a new third-order shear deformation plate theory", Compos. Part B, 92, 218-241. https://doi.org/10.1016/j.compositesb.2016.02.048
  10. Chandra, N., Nagendra Gopal, K.V. and Raja, S. (2015), "Vibroacoustic response of sandwich plates with functionally graded core", Acta Mech., 228(8), 2775-2789.
  11. Cook, R.D., Malkus, D.S. and Plesha, M.E. (2000), Concepts and Applications of Finite Element Analysis, (3rd edition), John Willy and Sons, Singapore.
  12. Do, T.V., Nguyen, D.K., Duc, N.D., Doan, D.H. and Bui, T.Q. (2017a), "Analysis of bi-directional functionally graded plates by FEM and a new third-order shear deformation plate theory", Thin-Wall. Struct., 119, 687-699. https://doi.org/10.1016/j.tws.2017.07.022
  13. Do, T.V., Bui, T.Q., Yu, T.T., Pham, D.T. and Nguyen, C.T. (2017b), "Role of material combination and new results of mechanical behavior for FG sandwich plates in thermal environment", J. Comput. Sci., 21, 164-181. https://doi.org/10.1016/j.jocs.2017.06.015
  14. Ferreira, A.J.M., Viola, E., Tornabene, F., Fantuzzi, N. and Zenkour, A.M. (2013), "Analysis of sandwich plates by generalized differential quadrature method", Math. Probl. Eng.
  15. Geng, Q. and Li, Y. (2012), "Analysis of dynamic and acoustic radiation characters for a flat plate under thermal environment", Int. J. Appl. Mech., 4(3), 1250028-1:16.
  16. Geng, Q. and Li, Y. (2014), "Solutions of dynamic and acoustic responses of a clamped rectangular plate in thermal environments", J. Vib. Control, 22(6), 1593-1603. https://doi.org/10.1177/1077546314543730
  17. Holmstrom, F. (2001), "Structure acoustic analysis using BEM/FEM: Implementation in MATLAB", Masters Dissertation; Lund University, Sweden.
  18. Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. (2016), "A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates", Steel Compos. Struct., Int. J., 22(2), 257-276. https://doi.org/10.12989/scs.2016.22.2.257
  19. Jeyaraj, P., Padmanabhan, C. and Ganesan, N. (2008), "Vibration and acoustic response of an isotropic plate in a thermal environment", J. Vib. Acoust., 130(5), 51005. https://doi.org/10.1115/1.2948387
  20. Jeyaraj, P., Ganesan, N. and Padmanabhan, C. (2009), "Vibration and acoustic response of a composite plate with inherent material damping in a thermal environment", J. Sound Vib., 320(1-2), 322-338. https://doi.org/10.1016/j.jsv.2008.08.013
  21. Jeyaraj, P., Padmanabhan, C. and Ganesan, N. (2011a), "Vibroacoustic behavior of a multilayered viscoelastic sandwich plate under a thermal environment", J. Sandw. Struct. Mater., 13(5), 509-537. https://doi.org/10.1177/1099636211400129
  22. Jeyaraj, P., Padmanabhan, C. and Ganesan, N. (2011b), "Vibroacoustic response of a circular isotropic cylindrical shell under a thermal environment", Int. J. Appl. Mech., 3(3), 525-541. https://doi.org/10.1142/S1758825111001111
  23. Johnson, W.M. and Cunefare, K.A. (2002), "Structural acoustic optimization of a composite cylindrical shell using FEM/BEM", J. Vib. Acoust., 124(3), 410-413. https://doi.org/10.1115/1.1473829
  24. Kant, T. and Swaminathan, K. (2001), "Analytical solutions for free vibration of laminated composite and sandwich plates based on a higher-order refined theory", Compos. Struct., 53(1), 73-85. https://doi.org/10.1016/S0263-8223(00)00180-X
  25. Khalfi, Y., Sid, M., Houari, A. and Tounsi, A. (2014), "Theory for thermal buckling of solar functionally graded plates on elastic foundation", Int. J. Comput. Methods, 11, 1350077. https://doi.org/10.1142/S0219876213500771
  26. Kolahchi, R. (2017), "A comparative study on the bending, vibration and buckling of viscoelastic sandwich nano-plates based on different nonlocal theories using DC, HDQ and DQ methods", Aerosp. Sci. Technol., 66, 235-248. https://doi.org/10.1016/j.ast.2017.03.016
  27. Larbi, W., Deu, J.F. and Ohayon, R. (2015), "Vibroacoustic analysis of double-wall sandwich panels with viscoelastic core", Comput. Struct., 174, 92-103.
  28. Li, X. and Yu, K. (2015), "Vibration and acoustic responses of composite and sandwich panels under thermal environment", Compos. Struct., 131, 1040-1049. https://doi.org/10.1016/j.compstruct.2015.06.037
  29. Li, X., Yu, K., Han, J., Song, H. and Zhao, R. (2016), "Buckling and vibro-acoustic response of the clamped composite laminated plate in thermal environment", Int. J. Mech. Sci., 119, 370-382. https://doi.org/10.1016/j.ijmecsci.2016.10.021
  30. Liu, Y. and Li, Y. (2013), "Vibration and acoustic response of rectangular sandwich plate under thermal environment", Shock Vib., 20(5), 1011-1030. https://doi.org/10.1155/2013/281723
  31. Mahapatra, T.R. and Panda, S.K. (2015), "Thermoelastic vibration analysis of laminated doubly curved shallow panels using nonlinear FEM", J. Therm. Stress., 38(1), 39-68. https://doi.org/10.1080/01495739.2014.976125
  32. Mahapatra, T.R., Kar, V.R. and Panda, S.K. (2015), "Nonlinear free vibration analysis of laminated composite doubly curved shell panel in hygrothermal environment", J. Sandw. Struct. Mater., 17(5), 511-545. https://doi.org/10.1177/1099636215577363
  33. Mahapatra, T.R., Panda, S.K. and Kar, V.R. (2016), "Nonlinear flexural analysis of laminated composite panel under hygrothermo-mechanical loading-A micromechanical approach", Int. J. Comput. Methods, 13(3), 1650015. https://doi.org/10.1142/S0219876216500158
  34. Mariem, J.B. and Hamdi, M.A. (1987), "A new boundary finite element method for fluid-structure interaction problems", Int. J. Numer. Methods Eng., 24(7), 1251-1267. https://doi.org/10.1002/nme.1620240703
  35. Moradi-Dastjerdi, R. and Payganeh, G. (2017), "Thermoelastic dynamic analysis of wavy carbon nanotube reinforced cylinders under thermal loads", Steel Compos. Struct., Int. J., 25(3), 315-326.
  36. Moradi-Dastjerdi, R., Malek-Mohammadi, H. and Momeni-Khabisi, H. (2017), "Free vibration analysis of nanocomposite sandwich plates reinforced with CNT aggregates", ZAMM - J. Appl. Math. Mech. / Zeitschrift fur Angew. Math. und Mech., 97(11), 1418-1435.
  37. Nikrad, S.F. and Asadi, H. (2015), "Thermal postbuckling analysis of temperature dependent delaminated composite plates", Thin-Wall. Struct., 97, 296-307. https://doi.org/10.1016/j.tws.2015.09.027
  38. Nikrad, S.F., Keypoursangsari, S., Asadi, H., Akbarzadeh, A.H. and Chen, Z.T. (2016), "Computational study on compressive instability of composite plates with off-center delaminations", Comput. Methods Appl. Mech. Engrg., 310, 429-459. https://doi.org/10.1016/j.cma.2016.07.021
  39. Nikrad, S.F., Asadi, H. and Wang, Q. (2017), "Postbuckling behaviors of open section composite struts with edge delamination using a layerwise theory", Int. J. Non. Linear. Mech., 95, 315-326. https://doi.org/10.1016/j.ijnonlinmec.2017.07.006
  40. Noor, A.K. and Burton, W.S. (1990), "Assessment of computational models for multilayered composite shells", Appl. Mech. Rev., 43(4), 67-97. https://doi.org/10.1115/1.3119162
  41. Panda, S.K. and Mahapatra, T.R. (2014), "Nonlinear finite element analysis of laminated composite spherical shell vibration under uniform thermal loading", Meccanica, 49(1), 191-213. https://doi.org/10.1007/s11012-013-9785-9
  42. Parhi, A. and Singh, B.N. (2017), "Nonlinear free vibration analysis of shape memory alloy embedded laminated composite shell panel", Mech. Adv. Mater. Struct., 24(9), 713-724. https://doi.org/10.1080/15376494.2016.1196777
  43. Sahu, K.C. and Tuhkuri, J. (2014), "Active control of sound transmission through soft-cored sandwich panels using volume velocity cancellation", Proceedings of Meetings on Acoustics, Volume 20, No. 1, pp. 040004.
  44. Sahu, K.C. and Tuhkuri, J. (2015), "Active control of sound transmission through a double panel partition using volume velocity and a weighted sum of spatial gradient control metrics", Noise Control Engr. J., 63(4), 347-358. https://doi.org/10.3397/1/376331
  45. Sahu, K.C., Tuhkuri, J. and Reddy, J.N. (2015), "Active structural acoustic control of a soft- core sandwich panel using multiple piezoelectric actuators and Reddy's higher order theory", J. Low Freq. Noise, Vib. Act. Control, 34(4), 385-412. https://doi.org/10.1260/0263-0923.34.4.385
  46. Sharma, N., Mahapatra, T.R. and Panda, S.K. (2017), "Vibroacoustic behaviour of shear deformable laminated composite flat panel using BEM and the higher order shear deformation theory", Compos. Struct., 180, 116-129. https://doi.org/10.1016/j.compstruct.2017.08.012
  47. Sharma, N., Mahapatra, T.R. and Panda, S.K. (2018a), "Thermoacoustic behaviour of laminated composite curved panels using higher-order finite-boundary element model", Int. J. Appl. Mech., 10(2), 1850017. DOI: 10.1142/S1758825118500175
  48. Sharma, N., Mahapatra, T.R., Panda, S.K. and Hirwani, C.K. (2018b), "Acoustic radiation and frequency response of higherorder shear deformable multilayered composite doubly curved shell panel - An experimental validation", Appl. Acoust., 133, 38-51. https://doi.org/10.1016/j.apacoust.2017.12.013
  49. Tong, B., Zhu, X., Li, Y. and Zhang, Y. (2017), "Numerical study of vibro-acoustic performance of composite and sandwich shells with viscoelastic core", Key Eng. Mater., 727, 249-256. https://doi.org/10.4028/www.scientific.net/KEM.727.249
  50. Tournour, M. and Atalla, N. (1998), "Vibroacoustic behavior of an elastic box using state-of-the-art FEM-BEM approach", Noise Control Eng. J., 46(3), 83-90. https://doi.org/10.3397/1.2828460
  51. Tornabene, F., Fantuzzi, N., Bacciocchi, M. and Reddy, J.N. (2017), "An equivalent layer-wise approach for the free vibration analysis of thick and thin laminated and sandwich shells", Appl. Sci., 7(1), 17.
  52. Yin, S., Hale, J.S., Yu, T., Bui, T.Q. and Bordas, S.P.A. (2014), "Isogeometric locking-free plate element: A simple first order shear deformation theory for functionally graded plates", Compos. Struct., 118, 121-138. https://doi.org/10.1016/j.compstruct.2014.07.028
  53. Yin, S., Yu, T., Bui, T.Q., Zheng, X. and Tanaka, S. (2016), "Inplane material inhomogeneity of functionally graded plates: A higher-order shear deformation plate isogeometric analysis", Compos. Part B, 106, 273-284. https://doi.org/10.1016/j.compositesb.2016.09.008
  54. Zhao, X., Geng, Q. and Li, Y. (2013), "Vibration and acoustic response of an orthotropic composite laminated plate in a hygroscopic environment", J. Acoust. Soc. Am., 133(3), 1433-1442. https://doi.org/10.1121/1.4790353

Cited by

  1. Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure vol.7, pp.3, 2019, https://doi.org/10.12989/anr.2019.7.3.181
  2. Boundary Element Algorithm for Nonlinear Modeling and Simulation of Three-Temperature Anisotropic Generalized Micropolar Piezothermoelasticity with Memory-Dependent Derivative vol.12, pp.3, 2018, https://doi.org/10.1142/s1758825120500271
  3. Flow of casson nanofluid along permeable exponentially stretching cylinder: Variation of mass concentration profile vol.38, pp.1, 2018, https://doi.org/10.12989/scs.2021.38.1.033
  4. Thermal frequency analysis of FG sandwich structure under variable temperature loading vol.77, pp.1, 2018, https://doi.org/10.12989/sem.2021.77.1.057
  5. Effect of suction on flow of dusty fluid along exponentially stretching cylinder vol.10, pp.3, 2018, https://doi.org/10.12989/anr.2021.10.3.263