References
- Alijani, F. and Amabili, M. (2014), "Non-linear vibrations of shells : A literature review from 2003 to 2013", Int. J. Non. Linear. Mech., 58, 233-257. https://doi.org/10.1016/j.ijnonlinmec.2013.09.012
- Atalla, N. and Sgard, F. (2015), Finite Element and Boundary Methods in Structural Acoustics and Vibration. CRC Press, Taylor and Francis Group, Boca Raton, FL, USA.
- Atalla, N., Nicolas, J. and Gauthier, C. (1996), "Acoustic radiation of an unbaffled vibrating plate with general elastic boundary conditions", J. Acoust. Soc. Am., 99(3), 1484-1494. https://doi.org/10.1121/1.414727
- Bedford, A. (1985), Hamilton's Principle in Continuum Mechanics, Pitman research notes in mathematics series, Pitman Advanced Publishing Program.
- Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Beg, O.A. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos. Part B, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
- Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., Int. J., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
- Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A. (2014), "A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates", Int. J. Comput. Methods, 11(6), 1350082. https://doi.org/10.1142/S0219876213500825
- Bui, T.Q., Khosravifard, A., Zhang, C., Hematiyan, M.R. and Golub, M.V. (2013), "Dynamic analysis of sandwich beams with functionally graded core using a truly meshfree radial point interpolation method", Eng. Struct., 47, 90-104. https://doi.org/10.1016/j.engstruct.2012.03.041
- Bui, T.Q., Do, T. Van, Ton, L.H.T., Doan, D.H., Tanaka, S., Pham, D.T., Nguyen-Van, T.-A., Yu, T. and Hirose, S. (2016), "On the high temperature mechanical behaviors analysis of heated functionally graded plates using FEM and a new third-order shear deformation plate theory", Compos. Part B, 92, 218-241. https://doi.org/10.1016/j.compositesb.2016.02.048
- Chandra, N., Nagendra Gopal, K.V. and Raja, S. (2015), "Vibroacoustic response of sandwich plates with functionally graded core", Acta Mech., 228(8), 2775-2789.
- Cook, R.D., Malkus, D.S. and Plesha, M.E. (2000), Concepts and Applications of Finite Element Analysis, (3rd edition), John Willy and Sons, Singapore.
- Do, T.V., Nguyen, D.K., Duc, N.D., Doan, D.H. and Bui, T.Q. (2017a), "Analysis of bi-directional functionally graded plates by FEM and a new third-order shear deformation plate theory", Thin-Wall. Struct., 119, 687-699. https://doi.org/10.1016/j.tws.2017.07.022
- Do, T.V., Bui, T.Q., Yu, T.T., Pham, D.T. and Nguyen, C.T. (2017b), "Role of material combination and new results of mechanical behavior for FG sandwich plates in thermal environment", J. Comput. Sci., 21, 164-181. https://doi.org/10.1016/j.jocs.2017.06.015
- Ferreira, A.J.M., Viola, E., Tornabene, F., Fantuzzi, N. and Zenkour, A.M. (2013), "Analysis of sandwich plates by generalized differential quadrature method", Math. Probl. Eng.
- Geng, Q. and Li, Y. (2012), "Analysis of dynamic and acoustic radiation characters for a flat plate under thermal environment", Int. J. Appl. Mech., 4(3), 1250028-1:16.
- Geng, Q. and Li, Y. (2014), "Solutions of dynamic and acoustic responses of a clamped rectangular plate in thermal environments", J. Vib. Control, 22(6), 1593-1603. https://doi.org/10.1177/1077546314543730
- Holmstrom, F. (2001), "Structure acoustic analysis using BEM/FEM: Implementation in MATLAB", Masters Dissertation; Lund University, Sweden.
- Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. (2016), "A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates", Steel Compos. Struct., Int. J., 22(2), 257-276. https://doi.org/10.12989/scs.2016.22.2.257
- Jeyaraj, P., Padmanabhan, C. and Ganesan, N. (2008), "Vibration and acoustic response of an isotropic plate in a thermal environment", J. Vib. Acoust., 130(5), 51005. https://doi.org/10.1115/1.2948387
- Jeyaraj, P., Ganesan, N. and Padmanabhan, C. (2009), "Vibration and acoustic response of a composite plate with inherent material damping in a thermal environment", J. Sound Vib., 320(1-2), 322-338. https://doi.org/10.1016/j.jsv.2008.08.013
- Jeyaraj, P., Padmanabhan, C. and Ganesan, N. (2011a), "Vibroacoustic behavior of a multilayered viscoelastic sandwich plate under a thermal environment", J. Sandw. Struct. Mater., 13(5), 509-537. https://doi.org/10.1177/1099636211400129
- Jeyaraj, P., Padmanabhan, C. and Ganesan, N. (2011b), "Vibroacoustic response of a circular isotropic cylindrical shell under a thermal environment", Int. J. Appl. Mech., 3(3), 525-541. https://doi.org/10.1142/S1758825111001111
- Johnson, W.M. and Cunefare, K.A. (2002), "Structural acoustic optimization of a composite cylindrical shell using FEM/BEM", J. Vib. Acoust., 124(3), 410-413. https://doi.org/10.1115/1.1473829
- Kant, T. and Swaminathan, K. (2001), "Analytical solutions for free vibration of laminated composite and sandwich plates based on a higher-order refined theory", Compos. Struct., 53(1), 73-85. https://doi.org/10.1016/S0263-8223(00)00180-X
- Khalfi, Y., Sid, M., Houari, A. and Tounsi, A. (2014), "Theory for thermal buckling of solar functionally graded plates on elastic foundation", Int. J. Comput. Methods, 11, 1350077. https://doi.org/10.1142/S0219876213500771
- Kolahchi, R. (2017), "A comparative study on the bending, vibration and buckling of viscoelastic sandwich nano-plates based on different nonlocal theories using DC, HDQ and DQ methods", Aerosp. Sci. Technol., 66, 235-248. https://doi.org/10.1016/j.ast.2017.03.016
- Larbi, W., Deu, J.F. and Ohayon, R. (2015), "Vibroacoustic analysis of double-wall sandwich panels with viscoelastic core", Comput. Struct., 174, 92-103.
- Li, X. and Yu, K. (2015), "Vibration and acoustic responses of composite and sandwich panels under thermal environment", Compos. Struct., 131, 1040-1049. https://doi.org/10.1016/j.compstruct.2015.06.037
- Li, X., Yu, K., Han, J., Song, H. and Zhao, R. (2016), "Buckling and vibro-acoustic response of the clamped composite laminated plate in thermal environment", Int. J. Mech. Sci., 119, 370-382. https://doi.org/10.1016/j.ijmecsci.2016.10.021
- Liu, Y. and Li, Y. (2013), "Vibration and acoustic response of rectangular sandwich plate under thermal environment", Shock Vib., 20(5), 1011-1030. https://doi.org/10.1155/2013/281723
- Mahapatra, T.R. and Panda, S.K. (2015), "Thermoelastic vibration analysis of laminated doubly curved shallow panels using nonlinear FEM", J. Therm. Stress., 38(1), 39-68. https://doi.org/10.1080/01495739.2014.976125
- Mahapatra, T.R., Kar, V.R. and Panda, S.K. (2015), "Nonlinear free vibration analysis of laminated composite doubly curved shell panel in hygrothermal environment", J. Sandw. Struct. Mater., 17(5), 511-545. https://doi.org/10.1177/1099636215577363
- Mahapatra, T.R., Panda, S.K. and Kar, V.R. (2016), "Nonlinear flexural analysis of laminated composite panel under hygrothermo-mechanical loading-A micromechanical approach", Int. J. Comput. Methods, 13(3), 1650015. https://doi.org/10.1142/S0219876216500158
- Mariem, J.B. and Hamdi, M.A. (1987), "A new boundary finite element method for fluid-structure interaction problems", Int. J. Numer. Methods Eng., 24(7), 1251-1267. https://doi.org/10.1002/nme.1620240703
- Moradi-Dastjerdi, R. and Payganeh, G. (2017), "Thermoelastic dynamic analysis of wavy carbon nanotube reinforced cylinders under thermal loads", Steel Compos. Struct., Int. J., 25(3), 315-326.
- Moradi-Dastjerdi, R., Malek-Mohammadi, H. and Momeni-Khabisi, H. (2017), "Free vibration analysis of nanocomposite sandwich plates reinforced with CNT aggregates", ZAMM - J. Appl. Math. Mech. / Zeitschrift fur Angew. Math. und Mech., 97(11), 1418-1435.
- Nikrad, S.F. and Asadi, H. (2015), "Thermal postbuckling analysis of temperature dependent delaminated composite plates", Thin-Wall. Struct., 97, 296-307. https://doi.org/10.1016/j.tws.2015.09.027
- Nikrad, S.F., Keypoursangsari, S., Asadi, H., Akbarzadeh, A.H. and Chen, Z.T. (2016), "Computational study on compressive instability of composite plates with off-center delaminations", Comput. Methods Appl. Mech. Engrg., 310, 429-459. https://doi.org/10.1016/j.cma.2016.07.021
- Nikrad, S.F., Asadi, H. and Wang, Q. (2017), "Postbuckling behaviors of open section composite struts with edge delamination using a layerwise theory", Int. J. Non. Linear. Mech., 95, 315-326. https://doi.org/10.1016/j.ijnonlinmec.2017.07.006
- Noor, A.K. and Burton, W.S. (1990), "Assessment of computational models for multilayered composite shells", Appl. Mech. Rev., 43(4), 67-97. https://doi.org/10.1115/1.3119162
- Panda, S.K. and Mahapatra, T.R. (2014), "Nonlinear finite element analysis of laminated composite spherical shell vibration under uniform thermal loading", Meccanica, 49(1), 191-213. https://doi.org/10.1007/s11012-013-9785-9
- Parhi, A. and Singh, B.N. (2017), "Nonlinear free vibration analysis of shape memory alloy embedded laminated composite shell panel", Mech. Adv. Mater. Struct., 24(9), 713-724. https://doi.org/10.1080/15376494.2016.1196777
- Sahu, K.C. and Tuhkuri, J. (2014), "Active control of sound transmission through soft-cored sandwich panels using volume velocity cancellation", Proceedings of Meetings on Acoustics, Volume 20, No. 1, pp. 040004.
- Sahu, K.C. and Tuhkuri, J. (2015), "Active control of sound transmission through a double panel partition using volume velocity and a weighted sum of spatial gradient control metrics", Noise Control Engr. J., 63(4), 347-358. https://doi.org/10.3397/1/376331
- Sahu, K.C., Tuhkuri, J. and Reddy, J.N. (2015), "Active structural acoustic control of a soft- core sandwich panel using multiple piezoelectric actuators and Reddy's higher order theory", J. Low Freq. Noise, Vib. Act. Control, 34(4), 385-412. https://doi.org/10.1260/0263-0923.34.4.385
- Sharma, N., Mahapatra, T.R. and Panda, S.K. (2017), "Vibroacoustic behaviour of shear deformable laminated composite flat panel using BEM and the higher order shear deformation theory", Compos. Struct., 180, 116-129. https://doi.org/10.1016/j.compstruct.2017.08.012
- Sharma, N., Mahapatra, T.R. and Panda, S.K. (2018a), "Thermoacoustic behaviour of laminated composite curved panels using higher-order finite-boundary element model", Int. J. Appl. Mech., 10(2), 1850017. DOI: 10.1142/S1758825118500175
- Sharma, N., Mahapatra, T.R., Panda, S.K. and Hirwani, C.K. (2018b), "Acoustic radiation and frequency response of higherorder shear deformable multilayered composite doubly curved shell panel - An experimental validation", Appl. Acoust., 133, 38-51. https://doi.org/10.1016/j.apacoust.2017.12.013
- Tong, B., Zhu, X., Li, Y. and Zhang, Y. (2017), "Numerical study of vibro-acoustic performance of composite and sandwich shells with viscoelastic core", Key Eng. Mater., 727, 249-256. https://doi.org/10.4028/www.scientific.net/KEM.727.249
- Tournour, M. and Atalla, N. (1998), "Vibroacoustic behavior of an elastic box using state-of-the-art FEM-BEM approach", Noise Control Eng. J., 46(3), 83-90. https://doi.org/10.3397/1.2828460
- Tornabene, F., Fantuzzi, N., Bacciocchi, M. and Reddy, J.N. (2017), "An equivalent layer-wise approach for the free vibration analysis of thick and thin laminated and sandwich shells", Appl. Sci., 7(1), 17.
- Yin, S., Hale, J.S., Yu, T., Bui, T.Q. and Bordas, S.P.A. (2014), "Isogeometric locking-free plate element: A simple first order shear deformation theory for functionally graded plates", Compos. Struct., 118, 121-138. https://doi.org/10.1016/j.compstruct.2014.07.028
- Yin, S., Yu, T., Bui, T.Q., Zheng, X. and Tanaka, S. (2016), "Inplane material inhomogeneity of functionally graded plates: A higher-order shear deformation plate isogeometric analysis", Compos. Part B, 106, 273-284. https://doi.org/10.1016/j.compositesb.2016.09.008
- Zhao, X., Geng, Q. and Li, Y. (2013), "Vibration and acoustic response of an orthotropic composite laminated plate in a hygroscopic environment", J. Acoust. Soc. Am., 133(3), 1433-1442. https://doi.org/10.1121/1.4790353
Cited by
- Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure vol.7, pp.3, 2019, https://doi.org/10.12989/anr.2019.7.3.181
- Boundary Element Algorithm for Nonlinear Modeling and Simulation of Three-Temperature Anisotropic Generalized Micropolar Piezothermoelasticity with Memory-Dependent Derivative vol.12, pp.3, 2018, https://doi.org/10.1142/s1758825120500271
- Flow of casson nanofluid along permeable exponentially stretching cylinder: Variation of mass concentration profile vol.38, pp.1, 2018, https://doi.org/10.12989/scs.2021.38.1.033
- Thermal frequency analysis of FG sandwich structure under variable temperature loading vol.77, pp.1, 2018, https://doi.org/10.12989/sem.2021.77.1.057
- Effect of suction on flow of dusty fluid along exponentially stretching cylinder vol.10, pp.3, 2018, https://doi.org/10.12989/anr.2021.10.3.263