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Abstract

The present study concentrales on the weak-scatterer hypothesis for the nonlinear wave-
body interaction problems. In this method, the free surface boundary conditions are
linearized on the incoming wave profile and the exact body motion i applied. The
considered problems are the diflraction problem near a circular cylinder and the ship
response in oblique waves. The numerical method of solution is a Rankine panel method.
The Rankine panel method of this study adopts the higher-order B spline basis function
for the approximation of physical variables. A modified Euler scheme is applied for
the lime stepping, which has neutral stability. The computational result shows some
nonlinear behaviors of disturbance waves and wave forces. Moreover, the ship response
shows very close results to experimental data.

Keywords: weak-scatterer assumption, nonlinear response, Rankine panel
method

1 Introduction

During last two decades, many linear and nonlinear wave-body interaction problems have been
tackled. Taking the advantage of the dramatic development of computational resources, most
works have adopted the numerical methods directly or indirectly. Inspired by the pioneering work
of Longuett-Higgins and Cokelet(1976), many studies on the fully nonlinear wave problems have
been iniroduced, particujarly for the local wave phenomenon. However, so far, the numerical
approach 1o the strongly nonlinear hody-wave problems is limited and nat matared. The nonlinear
ship motion problem is a good example of such case. Because of strong interaction between body
and wave, e.g. splash or slamming, it is extremely difficult o continue the stable computation
when the ship motion has large amplitude. The weak-scatterer hypothesis is in the middle of the
linear and fully nonlinear approaches. This hypothesis, as its name indicates, assumes the weak
disturbance by a body. That is, the dominant component in lotal flow is the incoming flow. It
should be noted that the body motion is not necessary (o be small and only the disturbance by the
body 1s asswined weak. The weak-scatterer assumption is introduced by Pawlowski(1992) from the
experimental observation on the surface flow near ships in waves. In many cases, ihe incident wave
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Figure 1: Coordinate system

plays a key role even though the ship experiences a large-amplitude motion. Then the scattering
component can be perturbed from the incident Hlows, and this is the essence of the weak-scatlerer
assumption. Some studies, e.g. Lin and Yue(1990), have applied the Froude-Krylov force on the
wetted surface by incident waves and/or the nonlinear motion of the bady, combined with the linear
(ree surface boundary condition. These studies are also based on the same idea in a large sense,
but the weak-scatterer assumption takes inlo account higher nonlinearity. Recently, a successful
application of this assumption has been reported for the ship motion in head seas(Huang and
Sclavounos 1998). They showed that the weak-scatterer hypothesis predicts the transfer response
functions of the heave and pitch motions closer to experimental results than the linear theory.
This paper introduces the application of this hypothesis to the diffraction problem around cylinder
and the ship motion in oblique sea. The diffraction problem may be a good case Lo observe the
free surface ponlinearity which the weak-scatterer assumption can provide. In the ship motion
problem, the nonlinearity of the body response will be observed.

2  Weak-Scatter Hypothesis; Formulation

Lets’ define a Cartesian coordinate system, £ = (x,v, z), shown in Figure 1. The coordinate
origin is on the body which may move with a constant speed U. The positive z-axis is oriented
upwards from the still-water level. The incident waves propagate with an angle & which is defined
as the angle between the negétive z-axis The fluid is assumed inviscid and incompressible and
flow s urotational. Then the velocity potential of total flow ©(, 1), governed by the Laplace
equation, can be introduced in the fluid domain,

In this study, a decomposilion of the total velocity potential is introduced as follows:

T(Z,t) = (F, ) + $(E,1) + (T, 1) + (&, 1) ()

where @ and ¢ are the basis and local flow potentials. In addition, g and ¢ indicate the velocity
poteniiais of incident wave and time-memory flow. In particular, the basis fow is the solution of
the boundary value problem which applies no-flux condition on the solid boundaries and also on
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the free surface defined by the given incident wave elevation. Similarly, the total wave elevation
n(z,y,t) can be decomposed into two components,

n(may)t) = §0($:y1t) +C($7y1-'f) (2)

where (g and ¢ denote the incoming and the disturbance wave elevations, respectively.

A key assumption of the weak-scatterer hypothesis is that the basis flow, @, the 1me-local
flow, ¢, and the incident wave flow, @y provide the dominant contribution to the total wave flow.
that is,

@1(353@07(;0 ~ O(l): (JO:C ~ O(E) (3)

From this set of assumptions, the free surface conditions on z = (y(z,¥,t) can be rewritlen with
respect to the disturbance quantities,  and ¢, as follows:
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During the derivation, equations (2) and {3) were applied to the exact free surface conditions and
3(£%) terms were neglected. Tt should be emphasized that the conditions are valid on z = (p.

The body boundary condition follows with the decomposition into three separate conditions
for the basis, time-local, and time-memory boundary value sub-problems:

? Ui, a¢ ~{a 2. 0 ©)
n aon on
where £ denotes the instantaneous body velocity vector. Note that these conditions are satisfied on
the instantaneous wetted surface.

Hydrodynamic force on the body can be obtained from the integration of pressure. which is
based on Bernoulli’s equation as follows:

P=p+pm+ B (7)
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where
5} — 1
p= - p[a—(U—W—w—wo)-V]¢—5pV¢-V¢
0 g -
Pn= — Pig — (U —-V®—-Vo— Vi) V|p—p 5~ (U= V&= Vo) Vo
- i
— p\‘/’d)g Vg —p [(;9{ (U —Vo)- V] o — qu) -V
Po= — pgz (8)

The equation of body motion can be writlen in the form,
(M + ag)€ + bol + (C + o) = Fin(€.€,6,1) (9)

where the matrix coefficients ag, Og, ¢o represent the time-local forces proportional to the acceler-

ation é, the velocity E and the displacement £, respectively. M and C are the mass and restoring
coefficient tensors. Fy, is the integrated memory force arising from surface wave effects.

3 Rankine Panel Method

The present numerical method is based on the studies of Sclavounos and Nakos{1288) for the
steady flow problem and Nakos(1993) for unsteady problem. Recenily, several extensions of this
method are introduced by Kim et al(1997), and Huang and Sclavounos{1998).

In this method, the fluid boundary is discrelized into flat panels, while the physical variables
are represented with a higher-order B-spline basis function. Then, the velocity potential can be
approximated as

~ Y G (0B(E) =Y ¢y (0P (€13 768, T,) (10)
N

J

where B, (,) is the B-spline basis function of order (p, g), defined on the local panel surface
(£1.&2) and B (£, 2,) is the local B-spline function along &, axis. The same approximation is
applied to the wave elevation and normal flux on the fluid boundary,

Then, a classical boundary integral equation is obtained using Green’s theorem,

(3 ) By + () /fSBw(é); G fag - (P f/ By (€)G(#: £)de — 0 (1)

where the superscript means time step, and the Green function is a simple Rankine source. Here,
w2 symbolizes all velocity potential to be involved.

The free surface conditions are integrated using a modified Euler scheme to update the dis-
turbance wave elevations and velocity potentials on the free surface. In this scheme, the free
surface elevation and velocity potential are obtained from the kinematic and dynamic conditions
respectively,

(o) = (Gt
JAN S

= Plgg Gy e ) (12}
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n+1 n
Eﬂc%% = Q(‘;DE:C]?-H? """ ) (13}
P and ¢ are the remaining terms in (4) and (5). Combining these with (11), the values of the
velocity potentials on the submerged body surface and the normal velocities on the free surface
can be obtatned.

The equation of motion, (9), is numerically integrated by a fourth-order Adam-Bashford-
Moulton predictor-corrector scheme. The first four time steps were integrated by a fourth-order
Runge-Kutta scheme. Kring and Sclavounos(1993) showed that this method is siable as long as
a set of conditions governing temporal and spatial discretization are met. Note that, in the weak-
scatier formulation, the nonlinear restoring force has been included in C, while only the linear
inertia has been considered in M.

An adequate implementation of the radiation condition is necessary in the truncated region of
the computational domain. In the present computation, a numerical beach is employed. Over this
artificial beach, the conventional method adopts a Newtonian-type cooling term, 1), into the
kinematic free surface condition. In this computation, an extra term, poipy, 18 added to ensure no
change of the linear dispersion relation when ps = —p3/4g.

4 Convergency of Numerical Method

The theoretical justification of a numerical scheme can be achieved by the stability analysis. The
stability analysis for the Rankine panel method using a B-spline basis function can be found in the
works of Sclavounos and Nakos for the steady wave problem(Sclavounos and Nakos 1988) and
unsteady ship motion using frequency-domain approach(INakos 199(). Moreover, Nakos and Kim
et al have extended this concept o the unsteady time-domain prablem (Nakos 1993, Kim et al
1997). Their analysis is limited to the linear problem, so il is not directly applicable to the weak-
scatterer formulalion. However, since the weak-scatterer problem recovers the nonlinear problem
when the wave amplitude becomes small, it is also important to observe the numerical stability
and consistency of the linear problem.

The essence of this analysis is to observe the characteristics of wave propagation in the discrete
domain. The discrete dispersion relation can be obtained using the discrele Fourier transformation
with respect to the space and time. When it is assumed that the panel sizes along z- and y-axes
are constant, i.e. Az, Ay, the triple discrete Fourier transform of the linear free surface condition
and Green’s identity Teads to the following form of the velocity potential in the discrete doma:

m _ 1 fé—.m Ay—wnh )
(P!;]m_ (gﬂ.)s /// ﬁe ulAx+omAy—win “dududw (14)

where the denominator, W, provides all information about wave dispersion. For the classical
linear free surface boundary conditions with a forward speed U, W takes the following form:

W = (8 —igF, D)7 — (2 - S+ F2D*\Z + 3° + ifF D (15)



Y. Kim and P, D. Sclavounos: Weak-Scatterer Hypothesis to the Wave-Body Interaction ...

where 3 = /Ax/ghii?, Z = W2 B, =U/\/ghz, S = AzB/Sy, D= D1 /B.and
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with & = ulaz/m, 0 = vAy/7.
When the panel size and time segment approach zero, we can prove that (13) becomes

W = (w— Uw)? — gv/u? + 02 4+ O(AzPT At?) (17)

This is the continuous dispersion relation, so that the present scheme has consistency between the
discrete problem and continuous problem. It is interesting that the present time stepping has the
second-order accuracy even though both equation {12) and (13) have the first-order accuracy.

A condition of temporally neutral stability can be derived [rom (15),

22 o2
ﬁz—(FhD45 S) >0 (18)

5 Computational Results

5.1 Diffraction problem around circular cylinders

In the diffraction problem, the contribution of the weak-scatterer assumption on only the free
surface nonlinearity can be observed. Figure 2 compares examples of the solution grids for the
linear and weak-scatierer problems. The free surface grids for the linear problem are distributed
on the still water surface and those are not necessary to be changed, while the weak-scatterer
formulation requires the solution grids on the incident flow surface as well as the instantaneous
welted body surface al each time step.

Figure 3 shows the comparisons of total wave elevations between the linear and weak-scatterer
solutions. In this case, the incident wave is the linear wave. The cylinder depth, d, is four times the
cylinder radius, a. In addition, the wave number & is lixed but the wave amplitude A is different.
When the incident wave amplitude approaches zero, the weak-scatter formulation recovers the
linear formulation. As expecled, the nonlinearity is more significant, particularly in local waves.
when the wave amphtude is larger.

Figure 4 shows the wave profile near the cylinder when k4 = 0.10 and ka — 1.0. The linear
and weak-scatterer results: are shown together for comparison. In this case, the incident wave is
up to the second order, therefore, a part of the second-order component is already included in the
weak-scatterer solution, The weak-scatterer solution shows shorter scattering wave than the linear
solution which is a typical nonlinear phenomenon.
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Figure 2: Comparison of solution grids; linear(left) and weak-scatter formulations(right)

(a) kA = 0.05 (b) kA = 0.20

Figure 3: Comparison of total wave contours between linear(lower half) and weak-
scatterer{upper half) solutions for two wave amplitudes; a/d = 0.25,ka = 1.0, W.S.
indicates the weak-scatterer solution
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Figure 4: Comparison of wave elevations around cylinder; ka = 1.0, 2nd-order incident
wave

Figure 5 shows the wave-induced forces on the cylinder. As the order of incident wave be-
comes higher, some phase shift is observed in the surge forces. A significant difference can be
observed in the heave force. In particular, the double-harmonic, i.e. the second-order, component
is dominant.

5.2 Nonlinear ship motions in oblique waves

$175 container ship has been considered in this study. and Figure 6 shows the solution grids at two
different time steps. In the weak-scatterer formulation, the nonlinear body motion is considered,
therefore the wetled hull surface as well as the free surface should be rediscretized at each time
step. The hull was discretized into about 600 panels and the free surface boundary has about 1200
panels.

Figure 7 shows the time history of heave and pitch motions in the incident waves of 150°
heading. In the time-domain approach, the lateral motions cause some numerical difficulties due
to no restoring force and moment, so the lateral motions were restrained in this computation.
Besides, the wave amplitude A in this computation is 0.015L where L is the ship length. As
shown in Figure 7, the ship motions becomes harmonic after several cycles.

Figure 8 shows the pressure contours on the hull surface when the wave angle is 120°. Due 1o
the pitch motion and hull geometry, the bow and stern areas have some pressure variations.

Figure 9 shows the three snapshots of wave contours [or the different incident waves. The
wave elevation of these figures includes all the components. Some reflection waves propagale
downstrearn mixed with the steady waves, and stronger refleclion can be cbserved at shorter inci-
dent waves. The incident wave is very dominant as shown in Figure 9(a) when the wave length is
large, while the steady and diffraction wave component becomes significant al shorler waves.

Figure 10 shows the heave and pitch Response Amplitude Operators (RAOs) for 1207 heading.
The RAOs are normalized with the ship length and wave namber. The nonlinear effect is clear, in
particular near peak, but the weak-seatlerer hypothesis provides closer results to the experimental
data than the strip theory. The present experimental data are from Dalzell et al(1992).
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Figure 5: Comparison of wave-mduced forces; ke = 1.0, incident waves: W.5.-10o{linear)
and W.S.-20(2nd-order)

Figure 6: Two snapshots of solution grids at different time sieps
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Figure 7: Time-history of the heave and pitch motions al w+/L/g = 2.25, 150 heading
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Figure 9: Instantaneous elevation contours at three different wave conditions
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6 Summary

The weak-scatterer hypothesis and its application have been introduced in this study. The weak-
scatterer method assumes that the disturbance by the body motion is small compared with the
incident flow. Therefore, the free surface boundary conditions are linearized on the incident wave
surface. In this study, the diffraction problem near a circular cylinder and the ship motion prob-
lem in oblique waves have been solved using Rankine parel method based on the weak-scatterer
hypothesis.

The weak-scatterer assumption provides a part of nonlinearity on the free surface waves. In
the diffraction problem, the effect of this nonlinearity on the {ree surface profile and force signals
was observed. Nonlinear waves shorter than the linear waves were abserved near the body, and
the force signals showed some phase shift and amplitude change. In particular, the second-order
effect was dominant in the vertical force.

The weak-scatterer method is more applicable to the ship motion problem. The present study
showed a successful simulation of the nonlinear ship motion in oblique waves, and the motion
RAOs were very close to the experimental data. In particular, the nonlinearity at RAQ peaks has
been considered very successfully.

1
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