• Title/Summary/Keyword: high-low junction

Search Result 267, Processing Time 0.031 seconds

Roles for α1-adrenoceptors during contractions by electrical field stimulation in mouse vas deferens

  • Alsufyani, Hadeel A.;Docherty, James R.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.6
    • /
    • pp.525-532
    • /
    • 2021
  • We have investigated the relative roles of α1-adrenoceptors and purinoceptors in contractions to low and high frequency stimulation of the mouse vas deferens, in terms of the time course of responses. In separate experiments, isometric contractile responses were obtained to 10 pulses at 1 Hz and 40 pulses at 10 Hz. Responses to 1 Hz stimulation consisted of a series of discrete peaks. The α1A-adrenoceptor antagonist RS100329 (10-9M-10-7M) significantly reduced the response to the first pulse, the α1D-adrenoceptor antagonist BMY7378 (10-7M-10-6M) significantly reduced the response to the first two pulses, and the non-selective α1-adrenoceptor antagonist prazosin (10-8M) reduced the response to the first 4 pulses at 1 Hz. Responses to 10 Hz stimulation consisted of an early peak response and a maintained plateau response. RS100329 significantly reduced the peak response but did not significantly affect the plateau response. Prazosin, significantly reduced both the peak and plateau responses. The α1A-adrenoceptor antagonist RS17053 in high concentrations reduced mainly the plateau response leaving a clear early peak response. The plateau response of contraction was almost abolished by the purinoceptor antagonist suramin. These results suggest that there is a relatively minor early α1D-adrenoceptor and a larger early α1A-adrenoceptor component to stimulationevoked contractions of mouse vas deferens, but the major α1-adrenoceptor component is revealed by prazosin to be α1B-adrenoceptor mediated. α1B-Adrenoceptor activation probably facilitates contractions mediated by other α1-adrenoceptors and by purinoceptors. These results suggest that combined non-selective α1-adrenoceptor blockade, particularly α1B-adrenoceptor blockade, in addition to P2X1-purinoceptor blockade is useful in reducing male fertility.

Increased Sensitivity of Carbon Nanotube Sensors by Forming Rigid CNT/metal Electrode

  • Park, Dae-Hyeon;Jeon, Dong-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.348-348
    • /
    • 2011
  • Carbon nanotube (CNT) field effect transistors and sensors use CNT as a current channel, of which the resistance varies with the gate voltage or upon molecule adsorption. Since the performance of CNT devices depends very much on the CNT/metal contact resistance, the CNT/electrode contact must be stable and the contact resistance must be small. Depending on the geometry of CNT/electrode contact, it can be categorized into the end-contact, embedded-contact (top-contact), and side-contact (bottom-contact). Because of difficulties in the sample preparation, the end-contact CNT device is seldom practiced. The embedded-contact in which CNT is embedded inside the electrode is desirable due to its rigidness and the low contact resistance. Fabrication of this structure is complicated, however, because each CNT has to be located under a high-resolution microscope and then the electrode is patterned by electron beam lithography. The side-contact is done by depositing CNT electrophoretically or by precipitating on the patterned electrode. Although this contact is fragile and the contact resistance is relatively high, the side-contact by far has been widely practiced because of its simple fabrication process. Here we introduce a simple method to embed CNT inside the electrode while taking advantage of the bottom-contact process. The idea is to utilize a eutectic material as an electrode, which melts at low temperature so that CNT is not damaged while annealing to melt the electrode to embed CNT. The lowering of CNT/Au contact resistance upon annealing at mild temperature has been reported, but the electrode in these studies did not melt and CNT laid on the surface of electrode even after annealing. In our experiment, we used a eutectic Au/Al film that melts at 250$^{\circ}C$. After depositing CNT on the electrode made of an Au/Al thin film, we annealed the sample at 250$^{\circ}C$ in air to induce eutectic melting. As a result, Au-Al alloy grains formed, under which the CNT was embedded to produce a rigid and low resistance contact. The embedded CNT contact was as strong as to tolerate the ultrasonic agitation for 90 s and the current-voltage measurement indicated that the contact resistance was lowered by a factor of 4. By performing standard fabrication process on this CNT-deposited substrate to add another pair of electrodes bridged by CNT in perpendicular direction, we could fabricate a CNT cross junction. Finally, we could conclude that the eutectic alloy electrode is valid for CNT sensors by examine the detection of Au ion which is spontaneously reduced to CNT surface. The device sustatined strong washing process and maintained its detection ability.

  • PDF

Electrical Characterization of Lateral NiO/Ga2O3 FETs with Heterojunction Gate Structure (이종접합 Gate 구조를 갖는 수평형 NiO/Ga2O3 FET의 전기적 특성 연구)

  • Geon-Hee Lee;Soo-Young Moon;Hyung-Jin Lee;Myeong-Cheol Shin;Ye-Jin Kim;Ga-Yeon Jeon;Jong-Min Oh;Weon-Ho Shin;Min-Kyung Kim;Cheol-Hwan Park;Sang-Mo Koo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.4
    • /
    • pp.413-417
    • /
    • 2023
  • Gallium Oxide (Ga2O3) is preferred as a material for next generation power semiconductors. The Ga2O3 should solve the disadvantages of low thermal resistance characteristics and difficulty in forming an inversion layer through p-type ion implantation. However, Ga2O3 is difficult to inject p-type ions, so it is being studied in a heterojunction structure using p-type oxides, such as NiO, SnO, and Cu2O. Research the lateral-type FET structure of NiO/Ga2O3 heterojunction under the Gate contact using the Sentaurus TCAD simulation. At this time, the VG-ID and VD-ID curves were identified by the thickness of the Epi-region (channel) and the doping concentration of NiO of 1×1017 to 1×1019 cm-3. The increase in Epi region thickness has a lower threshold voltage from -4.4 V to -9.3 V at ID = 1×10-8 mA/mm, as current does not flow only when the depletion of the PN junction extends to the Epi/Sub interface. As an increase of NiO doping concentration, increases the depletion area in Ga2O3 region and a high electric field distribution on PN junction, and thus the breakdown voltage increases from 512 V to 636 V at ID =1×10-3 A/mm.

Analysis of Capacitance and Mobility of ZTO with Amorphous Structure (비정질구조의 ZTO 박막에서 커패시턴스와 이동도 분석)

  • Oh, Teresa
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.14-18
    • /
    • 2019
  • The conductivity of a semiconductor is primarily determined by the carriers. To achieve higher conductivity, the number of carriers should be high, and an energy trap level is created so that the carriers can cross the forbidden zone with low energy. Carriers have a crystalline binding structure, and interfacial mismatching tends to make them less conductive. In general, high-concentration doping is typically used to increase mobility. However, higher conductivity is also observed in non-orthogonal conjugation structures. In this study, the phenomena of higher conductivity and higher mobility were observed with space charge limiting current due to tunneling phenomena, which are different from trapping phenomena. In an atypical structure, the number of carriers is low, the resistance is high, and the on/off characteristics of capacitances are improved, thus increasing the mobility. ZTO thin film improved the on/off characteristics of capacitances after heat treating at $150^{\circ}C$. In charging and discharging tests, there was a time difference in the charge and discharging shapes, there was no distinction between n and p type, and the bonding structure was amorphous, such as in the depletion layer. The amorphous bonding structure can be seen as a potential barrier, which is also a source of space charge limiting current and causes conduction as a result of tunneling. Thus, increased mobility was observed in the non-structured configuration, and the conductivity increased despite the reduction of carriers.

Synthesis and Photovoltaic Properties of Dendritic Photosensitizers containing Carbazole and Phenothiazine for Dye-sensitized Solar Cells (카바졸과 페노시아진을 이용한 염료감응형 태양전지의 염료 합성과 광적특성)

  • Kim, MyeongSeok;Jung, DaeYoung;Kim, JaeHong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.89.1-89.1
    • /
    • 2010
  • Since Gratzel and co-workers developed a new type of solar cell based on the nanocrystalline $TiO_2$ electrode, dye-sensitized solar cells (DSSCs) have attracted considerable attention on account of their high solar energy-to-conversion efficiencies (11%), their easy manufacturing process with low cost production compared to conventional p-n junction solar cells. The mechanism of DSSC is based on the injection of electrons from the photoexcited dye into the conduction band of nanocrystalline $TiO_2$. The oxidized dye is reduced by the hole injection process from either the hole counter or electrolyte. Thus, the electronic structures, such as HOMO, LUMO, and HOMO-LUMO gap, of dye molecule in DSSC are deeply related to the electron transfer by photoexcitation and redox potential. To date, high performance and good stability of DSSC based on Ru-dyes as a photosensitizer had been widely addressed in the literatures. DSSC with Ru-bipyridyl complexes (N3 and N719), and the black ruthenium dye have achieved power conversion efficiencies up to 11.2% and 10.4%, respectively. However, the Ru-dyes are facing the problem of manufacturing costs and environmental issues. In order to obtain even cheaper photosensitizers for DSSC, metal-free organic photosensitizers are strongly desired. Metal-free organic dyes offer superior molar extinction coefficients, low cost, and a diversity of molecular structures, compared to conventional Ru-dyes. Recently, novel photosensitizers such as coumarin, merocyanine, cyanine, indoline, hemicyanine, triphenylamine, dialkylaniline, bis(dimethylfluorenyl)-aminophenyl, phenothiazine, tetrahydroquinoline, and carbazole based dyes have achieved solar-to-electrical power conversion efficiencies up to 5-9%. On the other hand, organic dye molecules have large ${\pi}$-conjugated planner structures which would bring out strong molecular stacking in their solid-state and poor solubility in their media. It was well known that the molecular stacking of organic dyes could reduce the electron transfer pathway in opto-electronic devices, significantly. In this paper, we have studied on synthesis and characterization of dendritic organic dyes with different number of electron acceptor/anchoring moieties in the end of dendrimer. The photovoltaic performances and the incident photon-to-current (IPCE) of these dyes were measured to evaluate the effects of the dendritic strucuture on the open-circuit voltage and the short-circuit current.

  • PDF

Photovoltaic Properties of Dendritic Photosensitizers containing multi-chromophore for Dye-sensitized Solar Cells (multi-chromophore를 가지는 유기염료의 DSSC 광전변환거동)

  • Kim, MyeongSeok;Cheon, Jong Hun;Jung, DaeYoung;Kim, JaeHong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.117.2-117.2
    • /
    • 2011
  • Since Gratzel and co-workers developed a new type of solar cell based on the nanocrystalline TiO2 electrode, dye-sensitized solar cells (DSSCs) have attracted considerable attention on account of their high solar energy-to-conversion efficiencies (11%), their easy manufacturing process with low cost production compared to conventional p-n junction solar cells. The mechanism of DSSC is based on the injection of electrons from the photoexcited dye into the conduction band of nanocrystalline TiO2. The oxidized dye is reduced by the hole injection process from either the hole counter or electrolyte. Thus, the electronic structures, such as HOMO, LUMO, and HOMO-LUMO gap, of dye molecule in DSSC are deeply related to the electron transfer by photoexcitation and redox potential. To date, high performance and good stability of DSSC based on Ru-dyes as a photosensitizer had been widely addressed in the literatures. DSSC with Ru-bipyridyl complexes (N3 and N719), and the black ruthenium dye have achieved power conversion efficiencies up to 11.2% and 10.4%, respectively. However, the Ru-dyes are facing the problem of manufacturing costs and environmental issues. In order to obtain even cheaper photosensitizers for DSSC, metal-free organic photosensitizers are strongly desired. Metal-free organic dyes offer superior molar extinction coefficients, low cost, and a diversity of molecular structures, compared to conventional Ru-dyes. Recently, novel photosensitizers such as coumarin, merocyanine, cyanine, indoline, hemicyanine, triphenylamine, dialkylaniline, bis(dimethylfluorenyl)-aminophenyl, phenothiazine, tetrahydroquinoline, and carbazole based dyes have achieved solar-to-electrical power conversion efficiencies up to 5-9%. On the other hand, organic dye molecules have large ${\pi}$-conjugated planner structures which would bring out strong molecular stacking in their solid-state and poor solubility in their media. It was well known that the molecular stacking of organic dyes could reduce the electron transfer pathway in opto-electronic devices, significantly. In this paper, we have studied on synthesis and characterization of dendritic organic dyes with different number of electron acceptor/anchoring moieties in the end of dendrimer. The photovoltaic performances and the incident photon-to-current (IPCE) of these dyes were measured to evaluate the effects of the dendritic strucuture on the open-circuit voltage and the short-circuit current.

  • PDF

Molecular Conductance Switching Processes through Single Ruthenium Complex Molecules in Self-Assembled Monolayers

  • Seo, So-Hyeon;Lee, Jeong-Hyeon;Bang, Gyeong-Suk;Lee, Hyo-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.27-27
    • /
    • 2011
  • For the design of real applicable molecular devices, current-voltage properties through molecular nanostructures such as metal-molecule-metal junctions (molecular junctions) have been studied extensively. In thiolate monolayers on the gold electrode, the chemical bonding of sulfur to gold and the van der Waals interactions between the alkyl chains of neighboring molecules are important factors in the formation of well-defined monolayers and in the control of the electron transport rate. Charge transport through the molecular junctions depends significantly on the energy levels of molecules relative to the Fermi levels of the contacts and the electronic structure of the molecule. It is important to understand the interfacial electron transport in accordance with the increased film thickness of alkyl chains that are known as an insulating layer, but are required for molecular device fabrication. Thiol-tethered RuII terpyridine complexes were synthesized for a voltage-driven molecular switch and used to understand the switch-on mechanism of the molecular switches of single metal complexes in the solid-state molecular junction in a vacuum. Electrochemical voltammetry and current-voltage (I-V) characteristics are measured to elucidate electron transport processes in the bistable conducting states of single molecular junctions of a molecular switch, Ru(II) terpyridine complexes. (1) On the basis of the Ru-centered electrochemical reaction data, the electron transport rate increases in the mixed self-assembled monolayer (SAM) of Ru(II) terpyridine complexes, indicating strong electronic coupling between the redox center and the substrate, along the molecules. (2) In a low-conducting state before switch-on, I-V characteristics are fitted to a direct tunneling model, and the estimated tunneling decay constant across the Ru(II) terpyridine complex is found to be smaller than that of alkanethiol. (3) The threshold voltages for the switch-on from low- to high-conducting states are identical, corresponding to the electron affinity of the molecules. (4) A high-conducting state after switch-on remains in the reverse voltage sweep, and a linear relationship of the current to the voltage is obtained. These results reveal electron transport paths via the redox centers of the Ru(II) terpyridine complexes, a molecular switch.

  • PDF

Riparian Connectivity Assessment Using Species Distribution Model of Fish Assembly (어류군집의 종분포모형을 이용한 수변지역 연결성 평가)

  • Jeong, Seung Gyu;Lee, Dong Kun;Ryu, Ji Eun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.2
    • /
    • pp.17-26
    • /
    • 2015
  • River corridors facilitate dispersal and movement and prevent local extinction of species. As a result of stream restoration projects, which include installation of waterfront and flood control structures, the number of animals, which rely on river corridor, is decreasing. For the study, factors affecting fish assembly were extracted by a species distribution model with the fish data collected from the Seom River in Hoengseong County and City of Wonju, Ganwon Province, Korea between March to October 2013. The riparian connectivity was assessed using species richness and rarity. According to result of the field survey, there were 38 species and 7,061 individuals for fish. The analysis suggests the following. Firstly, factors affecting fish richness in species distribution model results are shown to be velocity, riffle, riparian width, and water width. The accuracy of the model proves to be suitable with the correlation coefficient of 0.83 and MAPE of 19.2%. Secondly, the low rarity area is shown to be straight streams in Jeon river near to Hongseong County and the high rarity area to be streams with large width, existing alluvial area at channel junction between Jeon river and Seom river. Thirdly, according to connectivity results, areas where weirs are installed or riparian buffer area is removed showed low connectivity. The areas where farmland near riparian and forest areas showed high connectivity. The results of this study can be utilized to improve current facilities and enhance connectivity as a restoration guide.

Laser Transmission Welding of Flexible Substrates and Evaluation of the Mechanical Properties (플렉서블 기판의 레이저 투과 용접 및 기계적 특성 평가)

  • Ko, Myeong-Jun;Sohn, Minjeong;Kim, Min-Su;Na, Jeehoo;Ju, Byeong-Kwon;Park, Young-Bae;Lee, Tae-Ik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.2
    • /
    • pp.113-119
    • /
    • 2022
  • In order to improve the mechanical reliability of next-generation electronic devices including flexible, wearable devices, a high level of mechanical reliability is required at various flexible joints. Organic adhesive materials such as epoxy for bonding existing polymer substrates inevitably have an increase in the thickness of the joint and involve problems of thermodynamic damage due to repeated deformation and high temperature hardening. Therefore, it is required to develop a low-temperature bonding process to minimize the thickness of the joint and prevent thermal damage for flexible bonding. This study developed flexible laser transmission welding (f-LTW) that allows bonding of flexible substrates with flexibility, robustness, and low thermal damage. Carbon nanotube (CNT) is thin-film coated on a flexible substrate to reduce the thickness of the joint, and a local melt bonding process on the surface of a polymer substrate by heating a CNT dispersion beam laser has been developed. The laser process conditions were constructed to minimize the thermal damage of the substrate and the mechanism of forming a CNT junction with the polymer substrate. In addition, lap shear adhesion test, peel test, and repeated bending experiment were conducted to evaluate the strength and flexibility of the flexible bonding joint.

Surgical Treatment of Gastric Gastrointestinal Stromal Tumor

  • Kong, Seong-Ho;Yang, Han-Kwang
    • Journal of Gastric Cancer
    • /
    • v.13 no.1
    • /
    • pp.3-18
    • /
    • 2013
  • Gastrointestinal stromal tumor is the most common mesenchymal tumor in the gastrointestinal tract and is most frequently developed in the stomach in the form of submucosal tumor. The incidence of gastric gastrointestinal stromal tumor is estimated to be as high as 25% of the population when all small and asymptomatic tumors are included. Because gastric gastrointestinal stromal tumor is not completely distinguished from other submucosal tumors, a surgical excisional biopsy is recommended for tumors >2 cm. The surgical principles of gastrointestinal stromal tumor are composed of an R0 resection with a normal mucosa margin, no systemic lymph node dissection, and avoidance of perforation, which results in peritoneal seeding even in cases with otherwise low risk profiles. Laparoscopic surgery has been indicated for gastrointestinal stromal tumors <5 cm, and the indication for laparoscopic surgery is expanded to larger tumors if the above mentioned surgical principles can be maintained. A simple exogastric resection and various transgastric resection techniques are used for gastrointestinal stromal tumors in favorable locations (the fundus, body, greater curvature side). For a lesion at the gastroesophageal junction in the posterior wall of the stomach, enucleation techniques have been tried preserve the organ's function. Those methods have a theoretical risk of seeding a ruptured tumor, but this risk has not been evaluated by well-designed clinical trials. While some clinical trials are still on-going, neoadjuvant imatinib is suggested when marginally unresectable or multiorgan resection is anticipated to reduce the extent of surgery and the chance of incomplete resection, rupture or bleeding.