DOI QR코드

DOI QR Code

Electrical Characterization of Lateral NiO/Ga2O3 FETs with Heterojunction Gate Structure

이종접합 Gate 구조를 갖는 수평형 NiO/Ga2O3 FET의 전기적 특성 연구

  • Geon-Hee Lee (Department of Electric Materials Engineering, Kwangwoon University) ;
  • Soo-Young Moon (Department of Electric Materials Engineering, Kwangwoon University) ;
  • Hyung-Jin Lee (Department of Electric Materials Engineering, Kwangwoon University) ;
  • Myeong-Cheol Shin (Department of Electric Materials Engineering, Kwangwoon University) ;
  • Ye-Jin Kim (Department of Electric Materials Engineering, Kwangwoon University) ;
  • Ga-Yeon Jeon (Department of Electric Materials Engineering, Kwangwoon University) ;
  • Jong-Min Oh (Department of Electric Materials Engineering, Kwangwoon University) ;
  • Weon-Ho Shin (Department of Electric Materials Engineering, Kwangwoon University) ;
  • Min-Kyung Kim (Department of Electric Materials Engineering, Kwangwoon University) ;
  • Cheol-Hwan Park (Department of Chemical Engineering, Kwangwoon University) ;
  • Sang-Mo Koo (Department of Electric Materials Engineering, Kwangwoon University)
  • 이건희 (광운대학교 전자재료공학과) ;
  • 문수영 (광운대학교 전자재료공학과) ;
  • 이형진 (광운대학교 전자재료공학과) ;
  • 신명철 (광운대학교 전자재료공학과) ;
  • 김예진 (광운대학교 전자재료공학과) ;
  • 전가연 (광운대학교 전자재료공학과) ;
  • 오종민 (광운대학교 전자재료공학과) ;
  • 신원호 (광운대학교 전자재료공학과) ;
  • 김민경 (광운대학교 전자재료공학과) ;
  • 박철환 (광운대학교 화학공학과) ;
  • 구상모 (광운대학교 전자재료공학과)
  • Received : 2023.05.04
  • Accepted : 2023.05.30
  • Published : 2023.07.01

Abstract

Gallium Oxide (Ga2O3) is preferred as a material for next generation power semiconductors. The Ga2O3 should solve the disadvantages of low thermal resistance characteristics and difficulty in forming an inversion layer through p-type ion implantation. However, Ga2O3 is difficult to inject p-type ions, so it is being studied in a heterojunction structure using p-type oxides, such as NiO, SnO, and Cu2O. Research the lateral-type FET structure of NiO/Ga2O3 heterojunction under the Gate contact using the Sentaurus TCAD simulation. At this time, the VG-ID and VD-ID curves were identified by the thickness of the Epi-region (channel) and the doping concentration of NiO of 1×1017 to 1×1019 cm-3. The increase in Epi region thickness has a lower threshold voltage from -4.4 V to -9.3 V at ID = 1×10-8 mA/mm, as current does not flow only when the depletion of the PN junction extends to the Epi/Sub interface. As an increase of NiO doping concentration, increases the depletion area in Ga2O3 region and a high electric field distribution on PN junction, and thus the breakdown voltage increases from 512 V to 636 V at ID =1×10-3 A/mm.

Keywords

Acknowledgement

This work was supported by the Technology Innovation Program Development of nextgeneration power semiconductor based on Si-onSiC structure (RS-2022-00154720), 1.2 kV low-loss gallium oxide transistor (RS-2022-00144027) funded By the Ministry of Trade, Industry & Energy (MOTIE, Korea), and the present research has been conducted by the excellent researcher support project of Kwangwoon University in 2022.

References

  1. B. J. Baliga, Fundamentals of Power Semiconductor Devices (Springer Science & Business Media, 2010), p. 23.
  2. T. Kimoto and J. A. Cooper, Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications (John Wiley & Sons, USA, 2014), p. 1.
  3. A. Khaligh and M. D'Antonio, IEEE Trans. Veh. Technol., 68, 3306 (2019). [DOI: https://doi.org/10.1109/TVT.2019.2897050]
  4. J. Lutz, H. Schlangenotto, U. Scheuermann, and R. De Doncker, Semiconductor Power Devices: Physics, Characteristics, Reliability (Springer Berlin, Heidelberg, 2011), p. 401. [DOI: https://doi.org/10.1007/978-3-642-11125-9]
  5. B. J. Baliga, Wide Bandgap Semiconductor Power Devices: Materials, Physics, Design, and Applications (Woodhead Publishing, United Kingdom, 2019) p. 32. [DOI: https://doi.org/10.1016/ C2016-0-04021-4]
  6. D. W. Byun, M. C. Shin, J. H. Moon, W. Bahng, W. H. Shin, J. M. Oh, C. Park, and S. M. Koo, J. Korean Inst. Electr. Electron. Mater. Eng., 34, 214 (2021). [DOI: https://doi.org/10.4313/JKEM.2021.34.3.214]
  7. G. H. Lee, D. W. Byun, M. C. Shin, and S. M. Koo, Inst. Korean Electr. Electron. Eng., 26, 50 (2022). [DOI: https://doi.org/10.7471/ikeee.2022.26.1.50]
  8. M. C. Shin, D. W. Byun, G. H. Lee, H. K. Shin, N. S. Lee, S. J. Kim, and S. M. Koo, J. Semiconductor & Display Technology, 21, 123 (2022).
  9. M. Higashiwaki, K. Sasaki, H. Murakami, Y. Kumagai, A. Koukitu, A. Kuramata, T. Masui, and S. Yamakoshi, Semicond. Sci. Technol., 31, 034001 (2016). [DOI: https://doi.org/10.1088/0268-1242/31/3/034001]
  10. G. Korotcenkov, Gallium Oxide: Technology, Devices and Applications (Elsevier, Kingdom of the Netherlands, 2018) p. 287.
  11. B. K. Mahajan, T. P. Chen, J. Noh, P. D. Ye, and M. A. Alam, Appl. Phys. Lett., 115, 173508 (2019). [DOI: https://doi.org/10.1063/1.5116828]
  12. M. Higashiwaki and S. Fujita, Gallium Oxide: Materials Properties, Crystal Growth, and Devices (Springer Nature, 2020) p. 1.
  13. M. Y. Kim, H. S. Seo, J. W. Seo, S. W. Jung, H. J. Lee, D. W. Byun, M. C. Shin, M. A. Schweitz, and S. M. Koo, J. Korean Inst. Electr. Electron. Mater. Eng., 35, 86 (2022). [DOI: https://doi.org/10.4313/JKEM.2022.35.1.13]
  14. S. J. Pearton, J. Yang, P. H. Cary IV, F. Ren, J. Kim, M. J. Tadjer, and M. A. Mastro, Appl. Phys. Rev., 5, 011301 (2018). [DOI: https://doi.org/10.1063/1.5006941]
  15. J. Shi, J. Zhang, L. Yang, M. Qu, D. C. Qi, and K.H.L. Zhang, Adv. Mater., 33, 2006230 (2021). [DOI: https://doi.org/10.1002/adma.202006230]
  16. K. J. Chen and C. Zhou, Phys. Status Solidi A, 208, 434 (2011). [DOI: https://doi.org/10.1002/pssa.201000631]
  17. H. Zhang, L. Yuan, X. Tang, J. Hu, J. Sun, Y. Zhang, Y. Zhang, and R. Jia, IEEE Trans. Power Electron., 35, 5157 (2020). [DOI: https://doi.org/10.1109/TPELs.2019.2946367]
  18. N. Ma, N. Tanen, A. Verma, Z. Guo, T. Luo, H. Xing, and D. Jena, Appl. Phys. Lett., 109, 212101 (2016). [DOI: https://doi.org/10.1063/1.4968550]
  19. E. Gagaoudakis, G. Michail, D. Katerinopoulou, K. Moschovis, E. Iliopoulos, G. Kiriakidis, V. Binas, and E. Aperathitis, Mater. Sci. Semicond. Process., 109, 104922 (2020). [DOI: https://doi.org/10.1016/j.mssp.2020.104922]
  20. H. Zhou, S. Zeng, J. Zhang, Z. Liu, Q. Feng, S. Xu, J. Zhang, and Y. Hao, Crystals, 11, 1186 (2021). [DOI: https://doi.org/10.3390/cryst11101186]