Acknowledgement
This work was supported by the Technology Innovation Program Development of nextgeneration power semiconductor based on Si-onSiC structure (RS-2022-00154720), 1.2 kV low-loss gallium oxide transistor (RS-2022-00144027) funded By the Ministry of Trade, Industry & Energy (MOTIE, Korea), and the present research has been conducted by the excellent researcher support project of Kwangwoon University in 2022.
References
- B. J. Baliga, Fundamentals of Power Semiconductor Devices (Springer Science & Business Media, 2010), p. 23.
- T. Kimoto and J. A. Cooper, Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications (John Wiley & Sons, USA, 2014), p. 1.
- A. Khaligh and M. D'Antonio, IEEE Trans. Veh. Technol., 68, 3306 (2019). [DOI: https://doi.org/10.1109/TVT.2019.2897050]
- J. Lutz, H. Schlangenotto, U. Scheuermann, and R. De Doncker, Semiconductor Power Devices: Physics, Characteristics, Reliability (Springer Berlin, Heidelberg, 2011), p. 401. [DOI: https://doi.org/10.1007/978-3-642-11125-9]
- B. J. Baliga, Wide Bandgap Semiconductor Power Devices: Materials, Physics, Design, and Applications (Woodhead Publishing, United Kingdom, 2019) p. 32. [DOI: https://doi.org/10.1016/ C2016-0-04021-4]
- D. W. Byun, M. C. Shin, J. H. Moon, W. Bahng, W. H. Shin, J. M. Oh, C. Park, and S. M. Koo, J. Korean Inst. Electr. Electron. Mater. Eng., 34, 214 (2021). [DOI: https://doi.org/10.4313/JKEM.2021.34.3.214]
- G. H. Lee, D. W. Byun, M. C. Shin, and S. M. Koo, Inst. Korean Electr. Electron. Eng., 26, 50 (2022). [DOI: https://doi.org/10.7471/ikeee.2022.26.1.50]
- M. C. Shin, D. W. Byun, G. H. Lee, H. K. Shin, N. S. Lee, S. J. Kim, and S. M. Koo, J. Semiconductor & Display Technology, 21, 123 (2022).
- M. Higashiwaki, K. Sasaki, H. Murakami, Y. Kumagai, A. Koukitu, A. Kuramata, T. Masui, and S. Yamakoshi, Semicond. Sci. Technol., 31, 034001 (2016). [DOI: https://doi.org/10.1088/0268-1242/31/3/034001]
- G. Korotcenkov, Gallium Oxide: Technology, Devices and Applications (Elsevier, Kingdom of the Netherlands, 2018) p. 287.
- B. K. Mahajan, T. P. Chen, J. Noh, P. D. Ye, and M. A. Alam, Appl. Phys. Lett., 115, 173508 (2019). [DOI: https://doi.org/10.1063/1.5116828]
- M. Higashiwaki and S. Fujita, Gallium Oxide: Materials Properties, Crystal Growth, and Devices (Springer Nature, 2020) p. 1.
- M. Y. Kim, H. S. Seo, J. W. Seo, S. W. Jung, H. J. Lee, D. W. Byun, M. C. Shin, M. A. Schweitz, and S. M. Koo, J. Korean Inst. Electr. Electron. Mater. Eng., 35, 86 (2022). [DOI: https://doi.org/10.4313/JKEM.2022.35.1.13]
- S. J. Pearton, J. Yang, P. H. Cary IV, F. Ren, J. Kim, M. J. Tadjer, and M. A. Mastro, Appl. Phys. Rev., 5, 011301 (2018). [DOI: https://doi.org/10.1063/1.5006941]
- J. Shi, J. Zhang, L. Yang, M. Qu, D. C. Qi, and K.H.L. Zhang, Adv. Mater., 33, 2006230 (2021). [DOI: https://doi.org/10.1002/adma.202006230]
- K. J. Chen and C. Zhou, Phys. Status Solidi A, 208, 434 (2011). [DOI: https://doi.org/10.1002/pssa.201000631]
- H. Zhang, L. Yuan, X. Tang, J. Hu, J. Sun, Y. Zhang, Y. Zhang, and R. Jia, IEEE Trans. Power Electron., 35, 5157 (2020). [DOI: https://doi.org/10.1109/TPELs.2019.2946367]
- N. Ma, N. Tanen, A. Verma, Z. Guo, T. Luo, H. Xing, and D. Jena, Appl. Phys. Lett., 109, 212101 (2016). [DOI: https://doi.org/10.1063/1.4968550]
- E. Gagaoudakis, G. Michail, D. Katerinopoulou, K. Moschovis, E. Iliopoulos, G. Kiriakidis, V. Binas, and E. Aperathitis, Mater. Sci. Semicond. Process., 109, 104922 (2020). [DOI: https://doi.org/10.1016/j.mssp.2020.104922]
- H. Zhou, S. Zeng, J. Zhang, Z. Liu, Q. Feng, S. Xu, J. Zhang, and Y. Hao, Crystals, 11, 1186 (2021). [DOI: https://doi.org/10.3390/cryst11101186]