DOI QR코드

DOI QR Code

Analysis of Capacitance and Mobility of ZTO with Amorphous Structure

비정질구조의 ZTO 박막에서 커패시턴스와 이동도 분석

  • Oh, Teresa (Division of Semiconductor Engineering, Cheongju University)
  • Received : 2019.03.12
  • Accepted : 2019.06.07
  • Published : 2019.06.30

Abstract

The conductivity of a semiconductor is primarily determined by the carriers. To achieve higher conductivity, the number of carriers should be high, and an energy trap level is created so that the carriers can cross the forbidden zone with low energy. Carriers have a crystalline binding structure, and interfacial mismatching tends to make them less conductive. In general, high-concentration doping is typically used to increase mobility. However, higher conductivity is also observed in non-orthogonal conjugation structures. In this study, the phenomena of higher conductivity and higher mobility were observed with space charge limiting current due to tunneling phenomena, which are different from trapping phenomena. In an atypical structure, the number of carriers is low, the resistance is high, and the on/off characteristics of capacitances are improved, thus increasing the mobility. ZTO thin film improved the on/off characteristics of capacitances after heat treating at $150^{\circ}C$. In charging and discharging tests, there was a time difference in the charge and discharging shapes, there was no distinction between n and p type, and the bonding structure was amorphous, such as in the depletion layer. The amorphous bonding structure can be seen as a potential barrier, which is also a source of space charge limiting current and causes conduction as a result of tunneling. Thus, increased mobility was observed in the non-structured configuration, and the conductivity increased despite the reduction of carriers.

반도체의 전도성은 주로 케리어에 의해서 결정된다. 전도성이 높아지려면 케리어의 수가 많고 에너지 내의 트랩 준위를 만들어서 케리어들이 낮은 에너지로도 금지대역을 넘어설수 있도록 하는 도핑기법을 주로 사용한다. 케리어들은 결정질 결합구조를 갖으며, 계면불일치에 의하여 전도성이 떨어지는 경향도 있지만 대체적으로 고농도 도핑은 이동도를 높이는 대표적인 방법에 속한다. 하지만 비정질 결합구조에서도 전도성이 높아지는 현상이 나타나며, 본 연구에서는 트래핑현상과는 다른 터널링 현상에 의한 공간전하제한 전류가 흐르면서 전도성이 향상되고 이동도가 높아지는 현상에 대하여 관찰하였다. 비정질구조에서는 케리어수가 낮고 저항이 높아지며, 커패시턴스의 on/off 특성이 향상되면서 이동도가 높아지는 것을 확인하였다. ZTO 박막은 150도에서 열처리한 경우 커패시턴스의 on/off 특성이 향상되었으며, 충전과 방전하는 실험에서는, 충전과 방전되는 형상에 있어서 시간차이가 있었으며, n형과 p형의 구분이 없었으며, 공핍층과 같은 비정질 결합구조를 보여주었다. 비정질 결합구조는 전위장벽으로 볼 수 있으며, 전위장벽은 공간전하제한전류가 흐르게 되는 원천이기도 하며, 터널링현상에 의한 전도현상이 나타나는 원인이 된다. 따라서 비정질구조에서 이동도가 증가하는 현상이 나타났으며, 케리어가 희박함에도 불구하고 전도성이 증가하는 것을 확인하였다.

Keywords

SHGSCZ_2019_v20n6_14_f0001.png 이미지

Fig. 1. Resistance of ZTO thin films with various annealing temperatures, (a) about ~100 ohm, (b) about ~1 ohm, (c) about ~0.1 ohm.

SHGSCZ_2019_v20n6_14_f0002.png 이미지

Fig. 2. Carrier density of ZTO thin films with various annealing temperature of, (a) 200 °C, (b) 50 °C and 150 °C, (c) 100 °C.

SHGSCZ_2019_v20n6_14_f0003.png 이미지

Fig. 3. Hall mobility of ZTO thin films with various annealing temperature.

SHGSCZ_2019_v20n6_14_f0004.png 이미지

Fig. 4. Capacitance of ZTO thin films with various annealed at, (a) not annealing, (b) 50 °C, (c) 100 °C, (d) 150 °C, (e) 200 °C.

SHGSCZ_2019_v20n6_14_f0005.png 이미지

Fig. 5. Hall coefficient, (a) 100 °C annealed ZTO film, (b) RT, (c) 50 °C, 150 °C and 200 °C to research the conduction properties of ZTO and correlation between the hall mobility.

References

  1. Teresa. Oh, "Analysis of Electrical Characteristics of Oxide Semiconductor of ZnO, SnO2 and ZTO," Korean Journal of Materials Research, vol. 25, No. 7, pp. 347-351, 2015. DOI: https://doi.org/10.3740/MRSK.2015.25.7.347
  2. Teresa. Oh, "Tunneling Condition at High Schottky Barrier and Ambipolar Transfer Characteristics in Zinc Oxide Semiconductor Thin Film Transistor," Material Research Bulletin, vol 77, pp.1-7, 2016. DOI: https://doi.org/10.1016/j.materresbull.2015.11.038
  3. Kyonghwan Oh and Oh-Kyong Kwon, "Threshold-Voltage-Shift Compensation and Suppression Method Using Hydrogenated Amorphous Silicon Thin-Film Transistors for Large Active Matrix Organic Light-Emitting Diode Displays," Japanese Journal of Applied Physics, vol. 51, pp. 03CD01, 2012. DOI: https://doi.org/10.7567/JJAP.51.03CD01
  4. John Robertson, Robert M. Wallace, "High-K materials and metal gates for CMOS applications," Materials Science and Engineering R, vol. 88, pp.1-41. 2015. DOI: https://doi.org/10.1016/j.mser.2014.11.001
  5. T. Oh and C. H. Kim "Study on Characteristic Properties of Annealed SiOC Film Prepared by Inductively Coupled Plasma Chemical Vapor Deposition," IEEE Trans. Plasma Science, vol. 38, pp. 1598-1602, 2010. DOI: https://doi.org/10.1109/TPS.2010.2049665
  6. Narendra Kumar, Satyendra Kumar, Jitendra Kumar and Siddhartha Pandaa, "Investigation of Mechanisms Involved in the Enhanced Label Free Detection of Prostate Cancer Biomarkers Using Field Effect Devices," Journal of The Electrochemical Society, vol. 164, no. 9, pp. B409-B416, 2017. DOI: https://doi.org/10.1149/2.0541709jes
  7. T. Oh and C. K. CHoi "Comparison between SiOC thin film fabricated by using plasma enhance chemical vapor deposition and SiO2 thin film by using fourier transform infrared spectroscopy," Journal of the Korean Physical Society, vol. 56, pp. 1150-1155, 2010. DOI: https://doi.org/10.3938/jkps.56.1150