• Title/Summary/Keyword: high-electron mobility transistors (HEMTs)

Search Result 40, Processing Time 0.027 seconds

5-MeV Proton-irradiation characteristics of AlGaN/GaN - on-Si HEMTs with various Schottky metal gates

  • Cho, Heehyeong;Kim, Hyungtak
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.484-487
    • /
    • 2018
  • 5 MeV proton-irradiation with total dose of $10^{15}/cm^2$ was performed on AlGaN/GaN-on-Si high electron mobility transistors (HEMTs) with various gate metals including Ni, TaN, W, and TiN to investigate the degradation characteristics. The positive shift of pinch-off voltage and the reduction of on-current were observed from irradiated HEMTs regardless of a type of gate materials. Hall and transmission line measurements revealed the reduction of carrier mobility and sheet charge concentration due to displacement damage by proton irradiation. The shift of pinch-off voltage was dependent on Schottky barrier heights of gate metals. Gate leakage and capacitance-voltage characteristics did not show any significant degradation demonstrating the superior radiation hardness of Schottky gate contacts on GaN.

Comprehensive study of components affecting extrinsic transconductance in In0.7Ga0.3As quantum-well high-electron-mobility transistors for image sensor applications (이미지 센서 적용을 위한 In0.7Ga0.3As QW HEMT 소자의 extrinsic trans-conductance에 영향을 미치는 성분들의 포괄적 연구)

  • Yun, Seung-Won;Kim, Dae-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.441-445
    • /
    • 2021
  • The components affecting the extrinsic transconductance (gm_ext) in In0.7Ga0.3As quantum-well (QW) high-electron-mobility transistors (HEMTs) on an InP substrate were investigated. First, comprehensive modeling, which only requires physical parameters, was used to explain both the intrinsic transconductance (gm_int) and the gm_ext of the devices. Two types of In0.7Ga0.3As QW HEMT were fabricated with gate lengths ranging from 10 ㎛ to sub-100 nm. These measured results were correlated with the modeling to describe the device behavior using analytical expressions. To study the effects of the components affecting gm_int, the proposed approach was extended to projection by changing the values of physical parameters, such as series resistances (RS and RD), apparent mobility (𝜇n_app), and saturation velocity (𝜈sat).

Simulation Study on the DC/RF Characteristics of MHEMTs (MHEMT 소자의 DC/RF 특성에 대한 시뮬레이션 연구)

  • Son, Myung-Sik
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.5
    • /
    • pp.345-355
    • /
    • 2011
  • GaAs-based metamorphic high electron mobility transistors (MHEMTs) and InP-based high electron mobility transistors (HEMTs) have good microwave and millimeter-wave frequency performance with lower minimum noise figure. MHEMTs have some advantages, especially for cost, compared with InP-based ones. In this paper, InAlAs/InxGa1-xAs/GaAs MHEMTs are simulated for DC/RF small-signal analysis. The hydrodynamic simulation parameters are calibrated to a fabricated 0.1-${\mu}m$ ${\Gamma}$-gate MHEMT device having the modulation-doped $In_{0.52}Al_{0.48}As/In_{0.53}Ga_{0.47}As$ heterostructure on the GaAs substrate, and the simulations for RF small-signal characteristics are performed, compared with the measured data, and analyzed for the devices. In addition, the simulations for the DC/RF characteristics of the MHEMTs with different gate-recess structures are performed, compared and analyzed.

The Field Modulation Effect of a Fluoride Plasma Treatment on the Blocking Characteristics of AlGaN/GaN High Electron Mobility Transistors

  • Kim, Young-Shil;Seok, O-Gyun;Han, Min-Koo;Ha, Min-Woo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.4
    • /
    • pp.148-151
    • /
    • 2011
  • We designed and fabricated aluminium gallium nitride (AlGaN)/GaN high electron mobility transistors (HEMTs) with stable reverse blocking characteristics established by employing a selective fluoride plasma treatment on the drainside gate edge region where the electric field is concentrated. Implanted fluoride ions caused a depolarization in the AlGaN layer and introduced an extra depletion region. The overall contour of the depletion region was expanded along the drift region. The expanded depletion region distributed the field more uniformly and reduced the field intensity peak. Through this field modulation, the leakage current was reduced to 9.3 nA and the breakdown voltage ($V_{BR}$) improved from 900 V to 1,400 V.

RF Dispersion and Linearity Characteristics of AlGaN/InGaN/GaN HEMTs (AlGaN/InGaN/GaN HEMTs의 RF Dispersion과 선형성에 관한 연구)

  • Lee, Jong-Uk
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.11
    • /
    • pp.29-34
    • /
    • 2004
  • This paper reports the RF dispersion and linearity characteristics of unpassivated AlGaN/InGaN/GaN high electron-mobility transistors (HEMTs) grown by molecular beam epitaxy (MBE). The devices with a 0.5 ${\mu}{\textrm}{m}$ gate-length exhibited relatively good DC characteristics with a maximum drain current of 730 mA/mm and a peak g$_{m}$ of 156 mS/mm. Highly linear characteristic was observed by relatively flat DC transconductance (g$_{m}$) and good inter-modulation distortion characteristics, which indicates tight channel carrier confinement of the InGaN channel. Little current collapse in pulse I-V and load-pull measurements was observed at elevated temperatures and a relatively high power density of 1.8 W/mm was obtained at 2 GHz. These results indicate that current collapse related with surface states will not be a power limiting factor for the AlGaN/InGaN HEMTs.

Effect of electron-beam irradiation on leakage current of AlGaN/GaN HEMTs on sapphire

  • Oh, Seung Kyu;Song, Chi Gyun;Jang, Taehoon;Kwak, Joon Seop
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.6
    • /
    • pp.617-621
    • /
    • 2013
  • This study examined the effect of electron-beam (E-beam) irradiation on the electrical properties of n-GaN, AlGaN and AlGN/GaN structures on sapphire substrates. E-beam irradiation resulted in a significant decrease in the gate leakage current of the n-GaN, AlGaN and HEMT structure from $4.0{\times}10^{-4}A$, $6.5{\times}10^{-5}A$, $2.7{\times}10^{-8}A$ to $7.7{\times}10^{-5}A$, $7.7{\times}10^{-6}A$, $4.7{\times}10^{-9}A$, respectively, at a drain voltage of -10V. Furthermore, we also investigated the effect of E-beam irradiation on the AlGaN surface in AlGaN/GaN heterostructure high electron mobility transistors(HEMTs). The results showed that the maximum drain current density of the AlGaN/GaN HEMTs with E-beam irradiation was greatly improved, when compared to that of the AlGaN/GaN HEMTs without E-beam irradiation. These results strongly suggest that E-beam irradiation is a promising method to reduce leakage current of AlGaN/GaN HEMTs on sapphire through the neutralization the trap.

Electrics and Noise Performances of AlGaN/GaN HEMTs with/without In-situ SiN Cap Layer (In-situ SiN 패시베이션 층에 따른 AlGaN/GaN HEMTs의 전기적 및 저주파 잡음 특성)

  • Yeo Jin Choi;Seung Mun Baek;Yu Na Lee;Sung Jin An
    • Journal of Adhesion and Interface
    • /
    • v.24 no.2
    • /
    • pp.60-63
    • /
    • 2023
  • The AlGaN/GaN heterostructure has high electron mobility due to the two-dimensional electron gas (2-DEG) layer, and has the characteristic of high breakdown voltage at high temperature due to its wide bandgap, making it a promising candidate for high-power and high-frequency electronic devices. Despite these advantages, there are factors that affect the reliability of various device properties such as current collapse. To address this issue, this paper used metal-organic chemical vapor deposition to continuously deposit AlGaN/GaN heterostructure and SiN passivation layer. Material and electrical properties of GaN HEMTs with/without SiN cap layer were analyzed, and based on the results, low-frequency noise characteristics of GaN HEMTs were measured to analyze the conduction mechanism model and the cause of defects within the channel.

Optimization of Ohmic Contact Metallization Process for AlGaN/GaN High Electron Mobility Transistor

  • Wang, Cong;Cho, Sung-Jin;Kim, Nam-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.1
    • /
    • pp.32-35
    • /
    • 2013
  • In this paper, a manufacturing process was developed for fabricating high-quality AlGaN/GaN high electron mobility transistors (HEMTs) on silicon carbide (SiC) substrates. Various conditions and processing methods regarding the ohmic contact and pre-metal-deposition $BCl_3$ etching processes were evaluated in terms of the device performance. In order to obtain a good ohmic contact performance, we tested a Ti/Al/Ta/Au ohmic contact metallization scheme under different rapid thermal annealing (RTA) temperature and time. A $BCl_3$-based reactive-ion etching (RIE) method was performed before the ohmic metallization, since this approach was shown to produce a better ohmic contact compared to the as-fabricated HEMTs. A HEMT with a 0.5 ${\mu}m$ gate length was fabricated using this novel manufacturing process, which exhibits a maximum drain current density of 720 mA/mm and a peak transconductance of 235 mS/mm. The X-band output power density was 6.4 W/mm with a 53% power added efficiency (PAE).

Structural analysis of $Al_{x}Ga_{1-x}As/In_{y}Ga_{1-y}$As P-HEMTs reverse engineering (Reverse Engineering을 이용한 $Al_{x}Ga_{1-x}As/In_{y}Ga_{1-y}$As P-HEMTs의 구조적 분석)

  • 김병헌;황광철;안형근;한득영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.255-258
    • /
    • 2001
  • In this paper, DC and small signal characteristics with different physical parameters are expected for p-HEMTs (Pseudomorphic High Electron Mobility Transistors) with different temperatures ranging from 300K to 623K which are widely used for a low noise and/or ultra high frequency device. A device of 0.2$\times$200 ${\mu}{\textrm}{m}$$^2$dimension having very low noise has been chosen to extract the experimental data. Theoretical prediction has been obtained using a simulaor(HELENA) which needs experimental input data extracted from reverse engineering process. From the results, relation between structural parameters and temperature dependency of electrical characteristics are qualitatively explained to use in the design of descrete and integrated circuits to guarantee the optimal operation of the system.

  • PDF

Effect of Output-conductance on Current-gain Cut-off frequency in In0.8Ga0.2As High-Electron-mobility Transistors (In0.8Ga0.2As HEMT 소자에서 Output-conductance가 차단 주파수에 미치는 영향에 대한 연구)

  • Rho, Tae-Beom;Kim, Dae-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.324-327
    • /
    • 2020
  • The impact of output conductance (go) on the short-circuit current-gain cut-off frequency (fT) in In0.8Ga0.2As high-electron-mobility transistors (HEMTs) on an InP substrate was investigated. An attempted was made to extract the values of fT in a simplified small-signal model (SSM) of the HEMTs, derive an analytical formula for fT in terms of the extrinsic model parameters of the simplified SSM, which are related to the intrinsic model parameters of a general SSM, and verify its validity for devices with Lg from 260 to 25 nm. In long-channel devices, the effect of the intrinsic output conductance (goi) on fT was negligible. This was because, from the simplified SSM perspective, three model parameters, such as gm_ext, Cgs_ext and Cgd_ext, were weakly dependent on goi. However, in short-channel devices, goi was found to play a significant role in degrading fT as Lg was scaled down. The increase in goi in short-channel devices caused a considerable reduction in gm_ext and an overall increase in the total extrinsic gate capacitance, yielding a decrease in fT with goi. Finally, the results were used to infer how fT is influenced by goi in HEMTs, emphasizing that improving electrostatic integrity is also critical importance to benefit fully from scaling down Lg.