이미지 센서 적용을 위한 $In_{\ell,7}Ga_{\ell,3}As$ QW HEMT 소자의 extrinsic trans-conductance에 영향을 미치는 성분들의 포괄적 연구

윤승원 $^{1} \cdot 김대현^{1,+}$

Comprehensive study of components affecting extrinsic transconductance in $In_{0.7}Ga_{0.3}As$ quantum-well high-electron-mobility transistors for image sensor applications

Seung-Won Yun¹ and Dae-Hyun Kim^{1,+}

Abstract

The components affecting the extrinsic transconductance $(g_{m_{ext}})$ in In_{0.7}Ga_{0.3}As quantum-well (QW) high-electron-mobility transistors (HEMTs) on an InP substrate were investigated. First, comprehensive modeling, which only requires physical parameters, was used to explain both the intrinsic transconductance $(g_{m_{int}})$ and the $g_{m_{ext}}$ of the devices. Two types of In_{0.7}Ga_{0.3}As QW HEMT were fabricated with gate lengths ranging from 10 µm to sub-100 nm. These measured results were correlated with the modeling to describe the device behavior using analytical expressions. To study the effects of the components affecting $g_{m_{int}}$, the proposed approach was extended to projection by changing the values of physical parameters, such as series resistances (R_S and R_D), apparent mobility ($\mu_{n_{.opp}}$), and saturation velocity (v_{sat}).

Keywords : Image sensor, Trans-conductance(g_m), HEMTs, InGaAs, High-mobility and device modeling.

1.서 론

In-rich 채널 In_xGa_{1-x}As/In_{0.52}Al_{0.48}As (x > 0.53) 물질을 이용한 HEMT 소자들은 반도체 표면의 전하량 변화에 매우 민감한 전 류 변화를 나타내므로, 이를 이용하여 초소형, 저전력 및 초고 주파에 대응 가능한 고민감도의 센서 제작이 가능하며, 통신 시 스템 그리고 이미지 센서 등 다양한 분야에서 응용되고 있다 [1-4]. 근래 차단 주파수(f_T)가 738 GHz인 InP HEMT 소자 [5]가 발표된 바 있으며, 최대 공진 주파수(f_{max})가 1 THz 인 소자가 보고되었다 [6].

HEMT 기반의 고민감도 센서 제작을 위해서는 우수한 동작 특성을 구현하는 것이 필수적인 요소이다. 소자의 성능 지표인

'경북대학교 전자전기공학부 (School of Electronic and Electrical Engineering, Kyungpook National University)

80, Daehak-ro, Buk-gu, Daegu, Republic of Korea

⁺Corresponding author: dae-hyun.kim@ee.knu.ac.kr

(Received: Oct. 19, 2021, Revised : Nov. 15, 2021, Accepted : Nov. 23, 2021)

f₁, f_{max}에는 외부에 인가되는 전압에 따른 소자의 실질적인 드레 인 전류 증폭 특성인 g_{m_ex}가 직접적으로 관여하고 있다는 사실 이 여러 연구 [7-9]를 통해 알려져 있다. g_{m_ex}는 전자 수송 특 성의 개선, 기생 저항의 감소 [10] 및 output-conductance(g_o)를 줄이는 것을 통하여 향상 시킬 수 있음이 알려져 있다. 특히, L_g 가 작을수록 FET의 g_{m_ex}가 개선되는 경향성을 보여주었으며, 이는 곧 고주파수 특성의 향상으로 이어졌기에 오랫동안 L_g를 감소시키는 방향으로 연구가 진행되었다. 그러나, 최근 보고된 FET 소자들의 전자 수송은 이미 ballistic 영역에 진입하였으며 [12,13], 단순히L_g를 줄이는 것 만으로 g_{m_ex}를 개선시키기는 어 려워졌다.

본 연구에서는 $g_{m_{ex}}$ 를 물리적인 parameter를 활용하여 구현 한 해석적인 모델링을 제시하며, 모델링의 유효성을 평가하기 위해 i-line 스테퍼(stepper) 및 전자빔 노광 (e-beam lithography) 기술을 적용한 2가지 종류의 In_{0.7}Ga_{0.3}As QW HEMT 소자를 제 작하였다. 그리고 제작된 소자들의 DC 측정 결과를 통해 얻은 $g_{m_{ex}}$ 값들을 해석적 모델링과 결부시키는 것으로, 다양한 범위 의 L_g 에 대한 $g_{m_{ex}}$ 를 포괄적으로 설명할 수 있는 물리적 parameter 들의 값을 제시하였다. 마지막으로, 모델링의 성분들을 변화시 키며 기생 저항과 전자 수송 특성과 같은 요인들이 $g_{m_{ex}}$ 에 어떤 영향을 미치는 지 논리적으로 분석하였다.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License(https://creativecommons.org/ licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Fig. 1. The $g_{m_{\underline{ext}}}$ and $g_{m_{\underline{int}}}$ model of a FET.

2. 연구 방법

2.1 포화 영역 $g_{m ext}$ 및 $g_{m int}$ 의 해석적 모델링

외부 전압인가단에 값의 변화에 따라 결정되는 값인 $g_{m_{ext}}$ 및 소자의 내부 캐리어 수송 특성에 의해서 결정되는 $g_{m_{int}}$ 사이의 관계는 수식 (1)과 같이 주어지게 된다 [10].

$$g_{m ext} = g_{m int} (1 - 2R_s \cdot g_o) / (1 + R_s \cdot g_{m int})$$
(1)

Fig. 1 과 같이, $g_{m_{int}}$ 은 직렬 연결된 기생 저항 성분인 R_s 및 R_D 그리고 DIBL과 같은 요인으로 인한 output-conductance (g_o) 에 의해 감소하여 $g_{m_{ext}}$ 으로 표현된다. 이 때, $g_o 는 L_g$ 감소 에 따라 증가하는 값이므로, 단채널에서 $g_{m_{ext}}$ 의 감소폭이 커지 게 되며 이는 각 소자들의DC 특성을 통해 확인 가능하다. 또한, 포화 영역에서의 $g_{m_{int}}$ 은 소자의 FET의 캐리어 수송 특성을 반 영한 포화 영역 드레인 전류 수식 (2)을 V_{GSI} 에 대해 미분하는 것으로 수식 (3)과 같이 표현할 수 있다.

$$I_D = C_{gi} [V_{GSi} - V_T - V_{DSi_sat}] \upsilon_{sat}$$
⁽²⁾

$$g_{m_int} = \frac{\partial I_D}{\partial V_{GSi}} = C_{gi} \left[1 - \frac{\partial V_{DSi_sat}}{\partial V_{GS}} \right] v_{sat}$$
(3)

$$\frac{\partial V_{DSi_sat}}{\partial V_{GS}} = \left(1 + \frac{2(V_{GSi} - V_T)}{L_g \cdot \upsilon_{sat} / \mu_{n_app}}\right)^{-1/2}$$
(4)

*V_{GSI}*의 변화에 따른 *V_{DSI_sal}*의 변화량을 수식 (4)와 같이 물리 적인 parameter로 나타낼 수 있으며, 이를 수식 (3)에 대입하면 아래와 같다.

$$g_{m_{int}} = C_{gi} \left[1 - \left(1 + \frac{2(V_{GSi} - V_T)}{L_g \cdot \upsilon_{sat} / \mu_{n_{app}}} \right)^{-1/2} \right] \upsilon_{sat}$$
(5)

이 때, 위 수식은 단위 면적당 intrinsic gate capacitance (C_{gi}) , 반전층의 전계에 의해 결정되는 유효 이동도(apparent mobility, μ_{n_app}) 그리고 saturation velocity (v_{sa}) 와 같은 물리적인 parameter

Fig. 2. Cross-sectional schematics of the (a) long- L_g , (b) short- L_g In_{0.7}Ga_{0.3}As QW HEMTs.

로 구성되어 있다. 위 식과 식 (1)을 연관 짓는 것으로 FET소 자의 $g_{m_{ext}}$ 값을 물리적 parameter의 조합을 통해 표현할 수 있 으며, 그 결과가 다양한 범위의 L_g 에 대해 In_a , $Ga_{a,3}$ As QW HEMT 에서 어떻게 나타나는지는 다음 장에서 살펴 볼 예정이다.

2.2 에피 구조 및 소자 공정

 $In_{0.7}Ga_{0.3}As QW$ HEMT 제작을 위한 에피층은 반절연 성질 의 InP 기판에 분자빔 에피택시 (MBE) 방식을 이용하여 성장 되었다. 에피층은 10 nm 두께 n+ $In_{0.7}Ga_{0.3}As$ (Si 도핑, 5×10^{19} cm⁻³)와 30 nm 두께 n+ $In_{0.53}Ga_{0.47}As$ (Si 도핑, 5×10^{19} cm⁻³)로 구성된 Capping layer 아래에 4-nm 두께 진성 InP etch stopper, 8-nm 두께의 진성 $In_{0.52}Al_{0.48}As$ barrier 영역 및 5×10^{19} cm⁻³의 Si 델타 도핑 영역, 3-nm 두께 진성 $In_{0.52}Al_{0.48}As$ spacer 영역, 10-nm 두께 진성 $In_{0.7}Ga_{0.3}As$ 채널 영역 및 300-nm 두께 진성 $In_{0.52}Al_{0.48}As$ 완충층으로 구성된다.

게이트 길이에 따라 Fig. 2와 같이 2가지 형태로 제작되었으 며, 3-인치 InP 기판에서 i-line stepper를 통해 제작하였다. Fig. 2(a) 구조의 장채널 소자는 i-line stepper를 통해 게이트를 형성 하였으며, 그 길이는 10 μm에서부터 0.5 μm까지의 범위로 제작 하였다. Fig. 2(b) 구조의 단채널 소자는 전자빔 노광 기술을 이 용하여 연구실에서 기 발표된 논문과 동일한 방식으로 게이트 를 형성하였으며 [12], 게이트 길이는 300 nm 부터 30 nm 이하 까지 범위로 제작하였다.

다음 절에서는 제안된 모델링 및 제작된 HEMT의 DC 측정 결과와의 결부를 통해 모델링의 검증 및 $g_{m_{ex}}$ 에 영향을 미치는 요인들에 대한 분석하고자 한다.

3. 결과 및 고찰

3.1 In_{0.7}Ga_{0.3}As QW HEMT의 DC 특성 및 해석적 모델링

Fig. 3(a)는 제작된 2가지 종류의 Ing, Gag, As QW HEMT의

Comprehensive study of components affecting extrinsic transconductance in Ino7Gao3As quantum-well high-electron-mobility transistors for image sensor applications

Fig. 3. (a) $g_{m_{gest}}$ characteristics at $V_{DS} = 0.8$ V, for the fabricated devices with L_g from 10 mm to 20 nm, and (b) the measured on-resistance (R_{ON}) against L_g values of the fabricated devices.

포화 영역인 $V_{DS} = 0.8$ V에서 측정된 $g_{m_{ext}}$ 값을 gate overdrive voltage($V_{GS} - V_T$)에 따라 다양한 게이트 길이에 대해 나타낸 결과이다.

장채널 소자에서는 전류값에 관여하는 반전층 전계의 크기가 L_g 에 반비례 하며 이에 따라 g_{m_gx} 값이 gate overdrive voltage 와 L_g 에 비례 하는 것을 확인할 수 있다. 또한, 단채널 소자에서 는 전계의 크기가 L_g 와 무관하게 포화되므로 g_{m_ex} 값 또한 포 화되는 특성이 관찰된다 [11]. Fig. 3(b)는 제작된 소자들의 L_g 길이에 따른 온 저항 (On resistance, 이하 R_{ON}) 특성을 보여주 고 있으며, R_{ON} 은 게이트 아래 저항인 채널 저항(R_{ch})및 소스와 드레인 저항의 합(R_s 와 R_D)으로 이루어진다. 이 때 R_{ch} 는 L_g 에 비례하므로, 해당 그림의 y 절편이 R_s 와 R_D 의 합이 된다. 제시 한 방법으로 추출한 R_s 의 값은 148 Ω·µm이다.

Fig. 4 는 $V_{DS} = 0.8$ V, $V_{GS} - V_T = 0.36$ V 일 때 10 μm에서 30 nm까지 범위에서 측정된 $g_{m_{ex}}$ 값을 나타낸 다음, 식 (1)을 통해 $g_{m_{int}}$ 값을 추출하였다. 식(5)의 C_{gi} 값은 소자 구조에 의해 결정되는 parameter이며 고정된 값을 사용하였다. 이 때 사용한 물리적 parameter 들은 각각 $R_S = 148$ Ω·μm, $C_{gi} = 0.66$ mF/cm², $\mu_{n_{app}} = 11,000$ cm²/Vs, $v_{sai} = 4.7 \times 10^7$ cm/s 이다. 그 결과, 소자

Fig. 4. Measured $g_{m_{_{_{\rm L}}XI}}$ and extracted $g_{m_{_{_{_{\rm I}}M}}}$ as a function of $L_{\rm g}$ for the fabricated devices at V_{GS} – V_T = 0.36 V and V_{DS} = 0.8 V (symbols), along with physical modeling.

Fig 5. Measured and modeled g_{m_ext} , together with the model projection while changing (a) ① $R_s = 250 \ \Omega \cdot \mu m$, ② $R_s = 50 \ \Omega \cdot \mu m$, (b) ③ $\mu_{n_app} = 14,000 \ cm^2/V \cdot s$ and $v_{sat} = 4.7 \times 10^7 \ cm/s$ as well as ④ $\mu_{n_app} = 14,000 \ cm^2/V \cdot s$ and $v_{sat} = 6.0 \times 10^7 \ cm/s$.

들의 전자 수송 특성을 반영하는 g_{m_m} 및 실제 소자의 특성을 나타내는 $g_{m_{ex}}$ 의 모델링 결과가 측정된 값을 모든 영역의 L_g 에 대해 잘 설명하고 있으며, 본 모델링을 통하여 $g_{m_{ex}}$ 에 영향 을 미치는 요인들에 대한 분석을 하고자 한다.

3.2 기생 저항 및 전자 수송 특성 변화에 따른 $g_{m_{ext}}$ 변화 분석

Fig. 5(a)는 모델링의 물리적 parameter 중에서 기생 저항 성 분을 148 Ω ·µm에서 각각 250 Ω ·µm 및 50 Ω ·µm 으로 변화시 킨 결과를 보여준다. Ballistic 수송이 발생하는 Sub-50 nm 영역 부터 mobility에 의한 수송이 일어나는 장채널 영역까지 모두 R_{s} 값이 감소할수록 g_{mex} 이 증가하는 경향을 확인하였다.

특히 단채널 영역에서는 증가하는 폭이 상대적으로 큰 것을 확인할 수 있다. 또한 Fig. 5(b)는 $\mu_{n_{app}}$ 의 값을 11,000 cm²/Vs 에서 14,000 cm²/Vs 으로 바꾼 경우 및 그와 동시에 v_{sat} 값까지 4.7 × 10⁷ cm/s 에서 6.0 × 10⁷ cm/s 로 변화시킨 결과를 나타내 고 있다. 이 때, $\mu_{n_{app}}$ 값이 증가함에 따라 장채널 영역의 $g_{m_{ext}}$ 이 증대되며, v_{sat} 값은 단채널 영역에서 그 영향력을 행사하는 것을 확인할 수 있다. Fig. 5를 통하여 기생 저항 성분을 감소 시키는 것과 동시에 전자 수송 특성인 $\mu_{n_{app}}$ 및 v_{sat} 를 균형 잡힌 방향으로 발전시켜 $g_{m_{ext}}$ 값을 극대화 할 수 있음을 의미한다.

4.결 론

다양한 범위의 L_{g} 를 갖는 In_{θ} , $Ga_{\theta,3}$ As QW HEMT 에 대하여 물리적 parameter인 C_{gi} , $\mu_{n_{_{app}}}$, $v_{_{std}}$ 로 구성된 해석적인 $g_{m_{_{ext}}}$ 모 델링이 제안되었다. 2 가지 방법으로 제작된 $In_{\theta,7}Ga_{\theta,3}$ As QW HEMT의 측정된 $g_{m_{_{ext}}}$ 를 제안된 모델링을 통해 해석하고자 했 으며, 이후 기생 저항과 전자 수송 특성의 변화에 따른 $g_{m_{_{ext}}}$ 변 화 양상을 분석하였다. 기생 저항 성분이 감소에 따라 $g_{m_{_{ext}}}$ 가 개선되었으며, 특히 채널의 길이가 짧아질수록 그러한 경향이 분명해졌다. 또한, $\mu_{n_{_{app}}}$ 의 변화는 장채널 영역, $v_{_{std}}$ 의 경우는 단 채널 영역의 $g_{m_{_{ext}}}$ 에 영향을 주었다. 이는 HEMT 소자의 $g_{m_{_{ext}}}$ 성능, 더 나아가 초고주파 특성 개선을 위해 기생 저항의 감소 및 전자 수송 특성의 최적화 과정이 매우 중요하다는 사실을 시사한다.

감사의 글

본 연구는 방위사업청 및 산업통상자원부의 공동재원으로 민 군겸용기술개발사업 (No. 19-CM-BD-05)의 지원으로 수행된 결 과임.

REFERENCES

 T. Takahashi, M. Sato, K. Makiyama, T. Hirose, and N. Hara, "InAlAs/InGaAs HEMTs with minimum noise figure of 1.0 dB at 94 GHz", *Proc. IEEE 19th Int. Conf. IPRM*, pp. 55-58, Matsue, Japan, 2007.

- [2] K. M. H. Leong, X. Mei, W. H. Yoshida, A. Zamora, J. G. Padilla, B. S. Gorospe, K. Nguyen, and W. R. Deal, "850 GHz receiver and transmitter front-end using InP HEMT", *IEEE Trans. THz Sci. Technol.*, Vol. 7, No. 4, pp. 466-475, 2017.
- [3] W. R. Deal, K. Leong, A. Zamora, B. Gorospe, K. Nguyen, and X. B. Mei, "A 660 GHz up-converter for THz communications", *Proc. IEEE Compd Semicond. Integr. Circuit Symp. (CSICS)*, pp. 1-4, Miami, FL, USA, 2017.
- [4] A. Tessmann, A. Leuther, S. Wagner, H. Massler, M. Kuri, H. -P. Stulz, M. Zink, M. Riessle and T. Merkle, "A 300 GHz low-noise amplifier S-MMIC for use in next-generation imaging and communication applications", *Proc. IEEE MTT-S Int. Microw. Symp.*, pp. 760-763, Honololu, Hi, USA, 2017.
- [5] H. B. Jo, S. W. Yun, J. G. Kim, D. Y. Yun, I. G. Lee, D. H. Kim, T. W. Kim, S. K. Kim, J. Yun, T. Kim, T. Tsutsumi, H. Sugiyama, and H. Matsuzaki, " $L_g = 19 \text{ nm } In_{0.8}Ga_{0.2}As$ composite-channel HEMTs with $f_T = 738 \text{ GHz}$ and $f_{max} = 492 \text{ GHz}$ ", 2020 Int. Electron. Devices. Meet., pp. 8.4.1-8.4.4, 2020
- [6] X. Mei, W. Yoshida, M. Lange, J. Lee, J. Zhou, P. H. Liu, K. Leong, A. Zamora, J. Padilla, S. Sarkozy, R. Lai, and W.-R. Deal, "First Demonstration of Amplification at 1 THz Using 25-nm InP High Electron Mobility Transistor Process", *IEEE Electron. Device. Lett.*, Vol. 36, No. 4, pp. 327-329, 2015.
- [7] D. Y. Yun, H. B. Jo, S. W. Son, J. M. Baek, J. H. Lee, T. W. Kim, D. H. Kim, T. Tsutsumi, H. Sugiyama, and H. Matsuzaki, "Impact of the source-to-drain spacing on the DC and RF characteristics of InGaAs/InAlAs high-electron mobility transistors", *IEEE Electron. Device. Lett.*, Vol. 39, No. 12, pp. 1844-1847, 2018.
- [8] T. Takahashi, Y. Kawano, K. Makiyama, S. Shiba, M. Sato, Y. Nakasha, and N. Hara, "Enhancement of f_{max} to 910 GHz by adopting asymmetric gate recess and double-side-doped structure in 75-nm-gate InAlAs/InGaAs HEMTs", *IEEE Trans. Electron. Devices.*, Vol. 64, No. 1, pp. 89-95, 2017.
- [9] H. Sugiyama, T. Hoshi, H. Yokoyama, and H. Matsuzaki, "Metal-organic vapor-phase epitaxy growth of InP-based HEMT structures with InGaAs/InAs composite channel", *Int. Conf. on IPRM*, pp. 245-248, Santa Barbara, CA, USA, 2012.
- [10] S. Y. Chou and D. A. Antoniadis, "Relationship between measured and intrinsic transconductances of FET's", *IEEE Trans. Electron. Devices.*, Vol. 34, No. 2, pp 448-450, 1987.
- [11] Y. Taur and T. H. Ning, *Fundamentals of Modern VLSI Devices, 2nd ed.*, Cambridge University Press, Chicago, 2009.
- [12] H. B. Jo, S. W. Yun, J. G. Kim, J. M. Baek, I. G. Lee, D. H. Kim, T. W. Kim, S. K. Kim, J. Yun, T. Kim, T. Tsutsumi, H. Sugiyama, and H. Matsuzaki, "Sub-30-nm In0.8Ga0.2As Composite-Channel High-Electron-Mobility Transistors with Record High-Frequency Characteristics" *IEEE Trans. Electron. Devices.*, Vol. 68, No. 4, pp. 2010-2016, 2021.
- [13] R. Lai, X. B. Mei, S. Sarkozy, W. Yoshida, P. H. Liu, J. Lee,

Comprehensive study of components affecting extrinsic transconductance in In_{0.7}Ga_{0.3}As quantum-well high-electron-mobility transistors for image sensor applications

M. Lange, V. Radisic, K. Leong, and W. Deal, "Sub 50 nm InP HEMT with $f_T = 586$ GHz and amplifier circuit gain at 390 GHz for sub-millimeter wave applications", *2010 22nd Int. Conf. Indium. Phosphide Relat. Mater.(IPRM)*, pp. 1-3, 2010.