DOI QR코드

DOI QR Code

Comprehensive study of components affecting extrinsic transconductance in In0.7Ga0.3As quantum-well high-electron-mobility transistors for image sensor applications

이미지 센서 적용을 위한 In0.7Ga0.3As QW HEMT 소자의 extrinsic trans-conductance에 영향을 미치는 성분들의 포괄적 연구

  • Yun, Seung-Won (School of Electronic and Electrical Engineering, Kyungpook National University) ;
  • Kim, Dae-Hyun (School of Electronic and Electrical Engineering, Kyungpook National University)
  • 윤승원 (경북대학교 전자전기공학부) ;
  • 김대현 (경북대학교 전자전기공학부)
  • Received : 2021.10.19
  • Accepted : 2021.11.23
  • Published : 2021.11.30

Abstract

The components affecting the extrinsic transconductance (gm_ext) in In0.7Ga0.3As quantum-well (QW) high-electron-mobility transistors (HEMTs) on an InP substrate were investigated. First, comprehensive modeling, which only requires physical parameters, was used to explain both the intrinsic transconductance (gm_int) and the gm_ext of the devices. Two types of In0.7Ga0.3As QW HEMT were fabricated with gate lengths ranging from 10 ㎛ to sub-100 nm. These measured results were correlated with the modeling to describe the device behavior using analytical expressions. To study the effects of the components affecting gm_int, the proposed approach was extended to projection by changing the values of physical parameters, such as series resistances (RS and RD), apparent mobility (𝜇n_app), and saturation velocity (𝜈sat).

Keywords

Acknowledgement

본 연구는 방위사업청 및 산업통상자원부의 공동재원으로 민군겸용기술개발사업 (No. 19-CM-BD-05)의 지원으로 수행된 결과임.

References

  1. T. Takahashi, M. Sato, K. Makiyama, T. Hirose, and N. Hara, "InAlAs/InGaAs HEMTs with minimum noise figure of 1.0 dB at 94 GHz", Proc. IEEE 19th Int. Conf. IPRM, pp. 55-58, Matsue, Japan, 2007.
  2. K. M. H. Leong, X. Mei, W. H. Yoshida, A. Zamora, J. G. Padilla, B. S. Gorospe, K. Nguyen, and W. R. Deal, "850 GHz receiver and transmitter front-end using InP HEMT", IEEE Trans. THz Sci. Technol., Vol. 7, No. 4, pp. 466-475, 2017. https://doi.org/10.1109/TTHZ.2017.2710632
  3. W. R. Deal, K. Leong, A. Zamora, B. Gorospe, K. Nguyen, and X. B. Mei, "A 660 GHz up-converter for THz communications", Proc. IEEE Compd Semicond. Integr. Circuit Symp. (CSICS), pp. 1-4, Miami, FL, USA, 2017.
  4. A. Tessmann, A. Leuther, S. Wagner, H. Massler, M. Kuri, H. -P. Stulz, M. Zink, M. Riessle and T. Merkle, "A 300 GHz low-noise amplifier S-MMIC for use in next-generation imaging and communication applications", Proc. IEEE MTT-S Int. Microw. Symp., pp. 760-763, Honololu, Hi, USA, 2017.
  5. H. B. Jo, S. W. Yun, J. G. Kim, D. Y. Yun, I. G. Lee, D. H. Kim, T. W. Kim, S. K. Kim, J. Yun, T. Kim, T. Tsutsumi, H. Sugiyama, and H. Matsuzaki, "Lg = 19 nm In0.8Ga0.2As composite-channel HEMTs with fT = 738 GHz and fmax = 492 GHz", 2020 Int. Electron. Devices. Meet., pp. 8.4.1-8.4.4, 2020
  6. X. Mei, W. Yoshida, M. Lange, J. Lee, J. Zhou, P. H. Liu, K. Leong, A. Zamora, J. Padilla, S. Sarkozy, R. Lai, and W.-R. Deal, "First Demonstration of Amplification at 1 THz Using 25-nm InP High Electron Mobility Transistor Process", IEEE Electron. Device. Lett., Vol. 36, No. 4, pp. 327-329, 2015. https://doi.org/10.1109/LED.2015.2407193
  7. D. Y. Yun, H. B. Jo, S. W. Son, J. M. Baek, J. H. Lee, T. W. Kim, D. H. Kim, T. Tsutsumi, H. Sugiyama, and H. Matsuzaki, "Impact of the source-to-drain spacing on the DC and RF characteristics of InGaAs/InAlAs high-electron mobility transistors", IEEE Electron. Device. Lett., Vol. 39, No. 12, pp. 1844-1847, 2018. https://doi.org/10.1109/LED.2018.2876709
  8. T. Takahashi, Y. Kawano, K. Makiyama, S. Shiba, M. Sato, Y. Nakasha, and N. Hara, "Enhancement of fmax to 910 GHz by adopting asymmetric gate recess and double-side-doped structure in 75-nm-gate InAlAs/InGaAs HEMTs", IEEE Trans. Electron. Devices., Vol. 64, No. 1, pp. 89-95, 2017. https://doi.org/10.1109/TED.2016.2624899
  9. H. Sugiyama, T. Hoshi, H. Yokoyama, and H. Matsuzaki, "Metal-organic vapor-phase epitaxy growth of InP-based HEMT structures with InGaAs/InAs composite channel", Int. Conf. on IPRM, pp. 245-248, Santa Barbara, CA, USA, 2012.
  10. S. Y. Chou and D. A. Antoniadis, "Relationship between measured and intrinsic transconductances of FET's", IEEE Trans. Electron. Devices., Vol. 34, No. 2, pp 448-450, 1987. https://doi.org/10.1109/T-ED.1987.22942
  11. Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices, 2nd ed., Cambridge University Press, Chicago, 2009.
  12. H. B. Jo, S. W. Yun, J. G. Kim, J. M. Baek, I. G. Lee, D. H. Kim, T. W. Kim, S. K. Kim, J. Yun, T. Kim, T. Tsutsumi, H. Sugiyama, and H. Matsuzaki, "Sub-30-nm In0.8Ga0.2As Composite-Channel High-Electron-Mobility Transistors with Record High-Frequency Characteristics" IEEE Trans. Electron. Devices., Vol. 68, No. 4, pp. 2010-2016, 2021. https://doi.org/10.1109/TED.2020.3045958
  13. R. Lai, X. B. Mei, S. Sarkozy, W. Yoshida, P. H. Liu, J. Lee, M. Lange, V. Radisic, K. Leong, and W. Deal, "Sub 50 nm InP HEMT with fT = 586 GHz and amplifier circuit gain at 390 GHz for sub-millimeter wave applications", 2010 22nd Int. Conf. Indium. Phosphide Relat. Mater.(IPRM), pp. 1-3, 2010.