• 제목/요약/키워드: high velocity compaction

검색결과 21건 처리시간 0.024초

The Application of P/M Advanced Techniques to Sintered Gears

  • Chongxi, Bao;Zhouqiang, Shen;Zhengping, Shu
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.987-988
    • /
    • 2006
  • The processes of P/M affect the properties of sintered gears. The different techniques of P/M lead to the different properties of sintered gears. This paper summarizes new progress in powder metallurgy for sintered gears. These progresses include warm compaction, high velocity compaction, sinter hardening, high temperature sintering, infiltration, CNC powder press and surface densification etc.

  • PDF

High Velocity Compaction : Overview of Materials, Applications and Potential

  • Dore, Florence;Lazzarotto, Ludovic;Bourdin, Stephane
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.20-21
    • /
    • 2006
  • Through different projects, CETIM and its scientific and industrial partners have evaluated the potential of the High Velocityy Compaction Technology in terms of materials and component shape. Various kinds of powder materials were studied: metals, ceramics and polymers. The HVC process was used with success to manufacture gears, large parts and multilevel components. Due to the high density of HVC parts, the green machining process enables shapes to be produced that would otherwise be impossible to compact and components to be produced with very hard sintered and homogeneous materials.

  • PDF

Green Body Behaviour of High Velocity Pressed Metal Powder

  • Jonsen, P.;Haggblad, H.A.;Troive, L.;Furuberg, J.;Allroth, S.;Skoglund, P.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.22-23
    • /
    • 2006
  • High velocity compaction (HVC) is a production technique with capacity to significantly improve the mechanical properties of powder metallurgy (PM) parts. Investigated here are green body data such as density, tensile strength, radial springback, ejection force and surface flatness. Comparisons are performed with conventional compaction using the same pressing conditions. Cylindrical samples of a pre-alloyed water atomized iron powder are used in this experimental investigation. The HVC process in this study resulted in a better compressibility curve and lower ejection force compared to conventional quasi static pressing. Vertical scanning interferometry measurements show that the HVC process gives flatter sample surfaces.

  • PDF

암버럭-토사 성토 노반의 다짐 관리 방안 (A Methodology for Compaction Control of Crushed-Rock-Soil-Fills)

  • 박철수;홍영표;조성호;목영진
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.607-616
    • /
    • 2006
  • More strict construction control of railway roadbeds is demanded in high speed railway system because of heavier repeated dynamic loading than conventional railways. The aim of this study is to propose a compaction control methodology of crushed-rock-soil-fills including as large particles as $200\sim300mm$ in diameter, which are easily encountered in high speed railway roadbed. Field tensity evaluation and in turn compaction control of such crushed-rock-soil-fills are almost impossible by conventional methods such as in-situ density measurements or plate loading tests. The proposed method consists of shear wave measurements of compaction specimens in laboratory and in-situ measurements of fills. In other words, compaction control can be carried out by comparing laboratory and field shear wave velocities using as a compaction control parameter. The proposed method was implemented at a soil site in the beginning and will be expanded to crushed-rock-soil-fills in future. One interesting result is that similar relationship of shear wave velocity and water content was obtained as that of density and water content with the maximum value at the optimum moisture content.

  • PDF

A Tentative Methodology for Quality Control of Trackbed Fills Using Field and Laboratory P-Wave Measurements

  • Park, Chul-Soo;Park, In-Beom;Kim, Eun-Jung;Mok, Young-Jin
    • International Journal of Railway
    • /
    • 제1권2호
    • /
    • pp.64-71
    • /
    • 2008
  • The quality of track-bed fills of railways has been controlled by field measurements of density $({\gamma}_d)$ and the results of plate-load tests. The control measures are compatible with the design procedures whose design parameter is $k_{30}$ for both ordinary-speed railways and high-speed railways. However, one of fatal flaws of the design procedures that there are no simple laboratory measurement procedures for the design parameters ($k_{30}$ or, $E_{v2}$ and $E_{v2}/E_{v1}$) in design stage. A new quality control procedure, in parallel with the advent of the new design procedure, is being proposed. This procedure is based upon P-wave velocity involving consistently the evaluation of design parameters in design stage and the field measurements during construction. The Key concept of the procedure is that the target value for field compaction control is the P-wave velocity determined at OMC using modified compaction test, and direct-arrival method is used for the field measurements during construction. The procedure was verified at a test site and the p-wave velocity turned out to be an excellent control measure. The specifications for the control also include field compaction water content of OMC${\pm}$2% as well as the p-wave velocity.

  • PDF

High-velocity powder compaction: An experimental investigation, modelling, and optimization

  • Mostofi, Tohid Mirzababaie;Sayah-Badkhor, Mostafa;Rezasefat, Mohammad;Babaei, Hashem;Ozbakkaloglu, Togay
    • Structural Engineering and Mechanics
    • /
    • 제78권2호
    • /
    • pp.145-161
    • /
    • 2021
  • Dynamic compaction of Aluminum powder using gas detonation forming technique was investigated. The experiments were carried out on four different conditions of total pre-detonation pressure. The effects of the initial powder mass and grain particle size on the green density and strength of compacted specimens were investigated. The relationships between the mentioned powder design parameters and the final features of specimens were characterized using Response Surface Methodology (RSM). Artificial Neural Network (ANN) models using the Group Method of Data Handling (GMDH) algorithm were also developed to predict the green density and green strength of compacted specimens. Furthermore, the desirability function was employed for multi-objective optimization purposes. The obtained optimal solutions were verified with three new experiments and ANN models. The obtained experimental results corresponding to the best optimal setting with the desirability of 1 are 2714 kg·m-3 and 21.5 MPa for the green density and green strength, respectively, which are very close to the predicted values.

탄성파를 이용한 철도노반의 다짐관리 방안 (A Compaction Control Procedure of Railway Trackbed Fills Using Elastic Waves)

  • 박철수;박인범;오상훈;김학성;목영진
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.1427-1439
    • /
    • 2008
  • The quality of track-bed fills of railways has been controlled by field measurements of density (${\gamma}_d$) and the results of plate-load tests. The control measures are compatible with the design procedures whose design parameter is $k_{30}$ for both ordinary-speed railways and high-speed railways. However, one of fatal flaws of the design procedures is that there are no simple laboratory measurement procedures for the design parameters ($k_{30}$ or, $E_{v2}$ and $E_{v2}/E_{v1}$) in design stage. A new quality control procedure, in parallel with the advent of the new design procedure, is being proposed. This procedure is based upon P-wave velocity involving consistently the evaluation of design parameters in design stage and the field measurements during construction. The key concept of the procedure is that the target value for field compaction control is the P-wave velocity determined at OMC using modified compaction test, and direct-arrival method is used for the field measurements during construction. The procedure was verified at a test site and the p-wave velocity turned out to be an excellent control measure. The specifications for the control also include field compaction water content of $OMC{\pm}2%$ as well as the p-wave velocity.

  • PDF

Compaction Simulator Study on Pectin Introducing Dwell Time

  • Kim, Hyun-Jo;Venkatesh, Gopi
    • Journal of Pharmaceutical Investigation
    • /
    • 제35권4호
    • /
    • pp.243-247
    • /
    • 2005
  • Although many scientists have used pectin, its feasibility in terms of tablet manufacturability with a high speed machine has never been evaluated. Therefore, compactibility of different pectin types for large scale tableting operation has been evaluated. The compactibility behavior of powder pectins was studied by a compaction simulator. It was found that pectin on its own does not produce tablets of acceptable quality even at a punch velocity as low as 20 rpm (e.g. low tensile strengths, capping and lamination irrespective of applied compression force). Thus, dwell time was introduced and more hard compact was produced as relaxation time in die increases. It was concluded that frequent structural failure observed in both pectin types was due to lack of plastic deformation, poor compactibility and high elastic recovery.

쓰레기 매립지반에서의 진동 동다짐 특성 (DYNAMIC PROPERTIES OF WASTE FILL SUBJECTED TO DYNAMIC COMPACTION)

  • 송정락
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1993년도 학술발표집 지반진동 영향평가
    • /
    • pp.83-116
    • /
    • 1993
  • 본 고는 쓰레기 매립장에서 동다짐을 시행할 시 발생하는 진동을 측정하고, 그 결과를 분석하여 쓰레기 매립지반의 동다짐 진동 특성을 고찰하였다. 진동특성은 크게 쓰레기 매립지반의 일반적 진동특성과 동다짐 조건 변화에 의한 진동특성의 2가지 측면으로 검토되었다. 그 결과 연구대상 쓰레기 매립지반의 기본적인 진동특성으로 충격지점 주위에서의 전단계수 G 행 17496~58320 t/m2, 감쇠비 D=14~58%, 탁월진동수 f=6~14 Hz 등으로 나타났다. 동다짐 조건 차이에 의한 진동특성으로는 타격회수가 증가될수록 cross hole시험에 의한 전단파 및 압축파의 속도가 중가하였으며, 타격지점으로 부터의 거리와 최대입자속도는 vPP = 5.08 [D/E]-1.4의 관계를 가지며, 쓰레기층 바닥에서는 반사파의 영향으로 진동의 진폭이 커지는 것으로 나타났다. 또한 진동에 의하여 지반이 개량되는 범위는 타격지점으로 부터 반경 약 6~10 m정도인 것으로 나타났다.

  • PDF

폭약을 이용한 세라믹분말의 충격고화에 관한 연구 (A Study on the Shock Compaction of Ceramic Powders using Explosive)

  • 김영국;김시조;조상호
    • 터널과지하공간
    • /
    • 제22권2호
    • /
    • pp.157-161
    • /
    • 2012
  • 본 논문에서는 산업용 폭약을 이용한 충격고화기술을 ZnO-98%과 $Ga_2O_3$-2% 혼합분말에 적용하여 직경 30mm, 두께 6mm인 $ZnOGa_2O_3$고화체를 형성 시켰다. 고화체의 경도 및 상대밀도는 각각 220~250 Hv, 97%이었으며, 표면에 대한 주사현미경 관찰결과 균열 및 결함은 발생되지 않았으며, 분말입자들은 강한 충격파에 의해 변형되어 서로 결합되었음을 확인하였다. 또한 X-ray 분석결과로부터 입자 간의 격자결합 및 결정자의 변형을 확인 할 수 있었으며, 이러한 격자결합과 결정자의 변형은 높은 전기저항의 원인이 된다는 것을 보여주었다.