DOI QR코드

DOI QR Code

High-velocity powder compaction: An experimental investigation, modelling, and optimization

  • Received : 2020.02.09
  • Accepted : 2021.02.04
  • Published : 2021.04.25

Abstract

Dynamic compaction of Aluminum powder using gas detonation forming technique was investigated. The experiments were carried out on four different conditions of total pre-detonation pressure. The effects of the initial powder mass and grain particle size on the green density and strength of compacted specimens were investigated. The relationships between the mentioned powder design parameters and the final features of specimens were characterized using Response Surface Methodology (RSM). Artificial Neural Network (ANN) models using the Group Method of Data Handling (GMDH) algorithm were also developed to predict the green density and green strength of compacted specimens. Furthermore, the desirability function was employed for multi-objective optimization purposes. The obtained optimal solutions were verified with three new experiments and ANN models. The obtained experimental results corresponding to the best optimal setting with the desirability of 1 are 2714 kg·m-3 and 21.5 MPa for the green density and green strength, respectively, which are very close to the predicted values.

Keywords

References

  1. Al-Qureshi, H., Galiotto, A. and Klein, A. (2005), "On the mechanics of cold die compaction for powder metallurgy", J. Mater. Proc. Technol., 166(1), 135-143. https://doi.org/10.1016/j.jmatprotec.2004.08.009.
  2. Al-Qureshi, H.A., Soares, M., Hotza, D., Alves, M. and Klein, A. (2008), "Analyses of the fundamental parameters of cold die compaction of powder metallurgy", J. Mater. Proc. Technol., 199(1-3), 417-424. https://doi.org/10.1016/j.jmatprotec.2007.08.030.
  3. Atrian, A., Majzoobi, G., Enayati, M. and Bakhtiari, H. (2015), "A comparative study on hot dynamic compaction and quasi-static hot pressing of Al7075/SiCnp nanocomposite", Adv. Powder Technol., 26(1), 73-82. https://doi.org/10.1016/j.apt.2014.08.007.
  4. Babaei, H., Mirzababaie Mostofi, T. and Alitavoli, M. (2015a), "Experimental investigation and analytical modelling for forming of circular-clamped plates by using gases mixture detonation", Proc. Inst. Mech. Eng., Part A: J. Mech. Eng. Sci., 234(5), 1102-1111. https://doi.org/10.1177/0954406215614336.
  5. Babaei, H., Mostofi, T.M. and Sadraei, S.H. (2015b), "Effect of gas detonation on response of circular plate-experimental and theoretical", Struct. Eng. Mech., 56(4), 535-548. https://doi.org/10.12989/sem.2015.56.4.535.
  6. Babaei, H., Mostofi, T.M., Alitavoli, M. and Darvizeh, A. (2016a), "Empirical modelling for prediction of large deformation of clamped circular plates in gas detonation forming process", Exp. Tech., 40(6), 1485-1494. https://doi.org/10.1007/s40799-016-0063-3.
  7. Babaei, H., Mostofi, T.M., Alitavoli, M., Namazi, N. and Rahmanpoor, A. (2016b), "Dynamic compaction of cold die Aluminum powders", Geomech. Eng., 10, 109-124. https://doi.org/10.12989/gae.2016.10.1.109.
  8. Babaei, H., Mostofi, T.M., Namdari-Khalilabad, M., Alitavoli, M. and Mohammadi, K. (2017a), "Gas mixture detonation method, a novel processing technique for metal powder compaction: Experimental investigation and empirical modeling", Powder Technol., 315, 171-181. https://doi.org/10.1016/j.powtec.2017.04.006.
  9. Babaei, H., Mirzababaie Mostofi, T. and Armoudli, E. (2017b), "On dimensionless numbers for the dynamic plastic response of quadrangular mild steel plates subjected to localized and uniform impulsive loading", Proc. Inst. Mech. Eng., Part E: J. Proc. Mech. Eng., 231(5), 939-950. https://doi.org/10.1177/0954408916650713.
  10. Baroutian, S., Aroua, M.K., Ramanicalan, A.A.A. and Sulaiman, N.M.N. (2010), "Potassium hydroxide catalyst supported on palm shell activated carbon for transesterification of palm oil", Fuel Proc. Technol., 91(11), 1378-1385. https://doi.org/10.1016/j.fuproc.2010.05.009.
  11. Derringer, G. and Suich, R. (1980), "Simultaneous optimization of several response variables", J. Qual. Technol., 12(4), 214-219. https://doi.org/10.1080/00224065.1980.11980968.
  12. Fahad, M. (1996), "Stresses and failure in the diametral compression test", J. Mater. Sci., 31(14), 3723-3729. https://doi.org/10.1007/BF00352786.
  13. Fredenburg, D.A., Thadhani, N.N. and Vogler, T.J. (2010), "Shock consolidation of nanocrystalline 6061-T6 aluminum powders", Mater. Sci. Eng., A, 527(15), 3349-3357. https://doi.org/10.1016/j.msea.2010.02.036.
  14. Gharababaei, H., Nariman-Zadeh, N. and Darvizeh, A. (2010), "A simple modelling method for deflection of circular plates under impulsive loading using dimensionless analysis and singular value decomposition", J. Mech., 26(3), 355-361. https://doi.org/10.1017/S1727719100003919.
  15. Hubadillah, S.K., Othman, M.H.D., Harun, Z., Ismail, A., Iwamoto, Y., Honda, S., Rahman, M.A., Jaafar, J., Gani, P. and Sokri, M.N.M. (2016), "Effect of fabrication parameters on physical properties of metakaolin-based ceramic hollow fibre membrane (CHFM)", Ceram. Int., 42(14), 15547-15558. https://doi.org/10.1016/j.ceramint.2016.07.002.
  16. Khalkhali, A. and Safikhani, H. (2012), "Pareto based multi-objective optimization of a cyclone vortex finder using CFD, GMDH type neural networks and genetic algorithms", Eng. Optim., 44(1), 105-118. https://doi.org/10.1080/0305215X.2011.564619.
  17. Kumar, V., Kumar, V. and Jangra, K.K. (2015), "An experimental analysis and optimization of machining rate and surface characteristics in WEDM of Monel-400 using RSM and desirability approach", J. Ind. Eng. Int., 11(3), 297-307. https://doi.org/10.1007/s40092-015-0103-0.
  18. Lee, C.H., Kim, S.H., Park, D.Y., Oh, J.W., Gal, C.W., Koo, J.M., Park, S.J. and Lee, S.C. (2019), "Analysis of cold compaction for Fe-C, Fe-C-Cu powder design based on constitutive relation and artificial neural networks", Powder Technol., 353, 330-344. https://doi.org/10.1016/j.powtec.2019.05.042.
  19. Marasini, N., Yan, Y.D., Poudel, B.K., Choi, H.G., Yong, C.S. and Kim, J.O. (2012), "Development and optimization of self-nanoemulsifying drug delivery system with enhanced bioavailability by Box-Behnken design and desirability function", J. Pharm. Sci., 101(12), 4584-4596. https://doi.org/10.1002/jps.23333.
  20. Mirzababaie Mostofi, T., Babaei, H. and Alitavoli, M. (2017), "Experimental and theoretical study on large ductile transverse deformations of rectangular plates subjected to shock load due to gas mixture detonation", Strain, 53(4), e12235. https://doi.org/10.1111/str.12235.
  21. Mostofi, T.M., Babaei, H. and Alitavoli, M. (2017a), "The influence of gas mixture detonation loads on large plastic deformation of thin quadrangular plates: Experimental investigation and empirical modelling", Thin Wall. Struct., 118, 1-11. https://doi.org/10.1016/j.tws.2017.04.031.
  22. Mostofi, T.M., Babaei, H., Alitavoli, M. and Hosseinzadeh, S. (2017b), "On dimensionless numbers for predicting large ductile transverse deformation of monolithic and multi-layered metallic square targets struck normally by rigid spherical projectile", Thin Wall. Struct., 112, 118-124. https://doi.org/10.1016/j.tws.2016.12.014.
  23. Mostofi, T.M., Babaei, H., Alitavoli, M., Lu, G. and Ruan, D. (2019), "Large transverse deformation of double-layered rectangular plates subjected to gas mixture detonation load", Int. J. Impact Eng., 125, 93-106. https://doi.org/10.1016/j.ijimpeng.2018.11.005.
  24. Podstawczyk, D., Witek-Krowiak, A., Dawiec, A. and Bhatnagar, A. (2015), "Biosorption of copper (II) ions by flax meal: empirical modeling and process optimization by response surface methodology (RSM) and artificial neural network (ANN) simulation", Ecol. Eng., 83, 364-379. https://doi.org/10.1016/j.ecoleng.2015.07.004.
  25. Safikhani, H., Abbassi, A., Khalkhali, A. and Kalteh, M. (2014), "Multi-objective optimization of nanofluid flow in flat tubes using CFD, Artificial Neural Networks and genetic algorithms", Adv. Powder Technol., 25(5), 1608-1617. https://doi.org/10.1016/j.apt.2014.05.014.
  26. Sahu, J., Acharya, J. and Meikap, B. (2009), "Response surface modeling and optimization of chromium (VI) removal from aqueous solution using Tamarind wood activated carbon in batch process", J. Hazard. Mater., 172(2-3), 818-825. https://doi.org/10.1016/j.jhazmat.2009.07.075.
  27. Shen, X., Zhang, G. and Bjerg, B. (2012), "Investigation of response surface methodology for modelling ventilation rate of a naturally ventilated building", Build. Environ., 54, 174-185. https://doi.org/10.1016/j.buildenv.2012.02.009.
  28. Tanner, T., Antikainen, O., Ehlers, H. and Yliruusi, J. (2017), "Introducing a novel gravitation-based high-velocity compaction analysis method for pharmaceutical powders", Int. J. Pharm., 526(1-2), 31-40. https://doi.org/10.1016/j.ijpharm.2017.04.039.
  29. Turk, C.T.S., Oz, U.C., Serim, T.M. and Hascicek, C. (2014), "Formulation and optimization of nonionic surfactants emulsified nimesulide-loaded PLGA-based nanoparticles by design of experiments", Aaps Pharmscitech, 15(1), 161-176. https://doi.org/10.1208/s12249-013-0048-9.
  30. Vorozhtsov, S., Vorozhtsov, A., Kudryashova, O., Zhukov, I. and Promakhov, V. (2017), "Structural and mechanical properties of aluminium-based composites processed by explosive compaction", Powder Technol., 313, 251-259. https://doi.org/10.1016/j.powtec.2017.03.027.
  31. Wang, J., Qu, X., Yin, H., Yi, M. and Yuan, X. (2009), "High velocity compaction of ferrous powder", Powder Technol., 192(1), 131-136. https://doi.org/10.1016/j.powtec.2008.12.007.
  32. Wei, C., Vitali, E., Jiang, F., Du, S., Benson, D., Vecchio, K., Thadhani, N. and Meyers, M. (2012), "Quasi-static and dynamic response of explosively consolidated metal-aluminum powder mixtures", Acta Mater., 60(3), 1418-1432. https://doi.org/10.1016/j.actamat.2011.10.027.
  33. Yan, Z., Chen, F. and Cai, Y. (2011), "High-velocity compaction of titanium powder and process characterization", Powder Technol., 208(3), 596-599. https://doi.org/10.1016/j.powtec.2010.12.026.
  34. Yasar, M. (2004), "Gas detonation forming process and modeling for efficient spring-back prediction", J. Mater. Proc. Technol., 150(3), 270-279. https://doi.org/10.1016/j.jmatprotec.2004.02.060.
  35. Yasar, M., Demirci, H.I. and Kadi, I. (2006), "Detonation forming of aluminium cylindrical cups experimental and theoretical modelling", Mater. Des., 27(5), 397-404. https://doi.org/10.1016/j.matdes.2004.11.005.
  36. Yi, M.J., Yin, H.Q., Wang, J.Z., Yuan, X.J. and Qu, X.H. (2009), "Comparative research on high-velocity compaction and conventional rigid die compaction", Front. Mater. Sci. China, 3(4), 447. https://doi.org/10.1007/s11706-009-0057-5.
  37. You, D., Liu, D., Guan, H., Huang, Q., Xiao, Z. and Yang, C. (2018), "A control method of high impact energy and cosimulation in powder high-Velocity compaction", Adv. Mater. Sci. Eng., 2018, 1-11. https://doi.org/10.1155/2018/9141928.
  38. Zhang, D.S., Liu, W., Li, Y.P. and Hu, C.Q. (2013), "Establishment and optimization of an HPTLC method for the analysis of gatifloxacin and related substances by design of experiment", JPC J. Planar Chromatogr.-Mod. TLC, 26(3), 215-225. https://doi.org/10.1556/JPC.26.2013.3.3.
  39. Zhang, H., Zhang, L., Dong, G., Liu, Z., Qin, M. and Qu, X. (2016b), "Effects of warm die on high velocity compaction behaviour and mechanical properties of iron based PM alloy", Powder Metall., 59(2), 100-106. https://doi.org/10.1179/1743290115Y.0000000019.
  40. Zhang, H., Zhang, L., Dong, G., Liu, Z., Qin, M., Qu, X. and Lu, Y. (2016a), "Effects of annealing on high velocity compaction behavior and mechanical properties of iron-base PM alloy", Powder Technol., 288, 435-440. https://doi.org/10.1016/j.powtec.2015.10.040.
  41. Zhang, K.Q., Yin, H.Q., Jiang, X., Liu, X.Q., He, F., Deng, Z.H., ... & Qu, X.H. (2019), "A novel approach to predict green density by high-Velocity compaction based on the materials informatics method", Int. J. Miner. Metall. Mater., 26(2), 194-201. https://doi.org/10.1007/s12613-019-1724-x.
  42. Zhao, L., Deng, X., Yu, H., Guan, H., Li, X., Xiao, Z., Liu, Z. and Greneche, J.M. (2017), "Structure and performance of anisotropic nanocrystalline Nd-Fe-B magnets fabricated by high-velocity compaction followed by deformation", J. Magn. Magn. Mater., 443, 51-57. https://doi.org/10.1016/j.jmmm.2017.07.044.