• Title/Summary/Keyword: high temperature high pressure

Search Result 4,161, Processing Time 0.036 seconds

Effect of Evaluation Conditions on Electrochemical Accelerated Degradation of PEMFC Polymer Membrane (PEMFC 고분자 막의 전기화학적 가속 열화에 미치는 평가조건들의 영향)

  • Sohyeong Oh;Donggeun Yoo;Suk Joo Bae;Sun Geu Chae;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.356-361
    • /
    • 2023
  • In order to improve the durability of the proton exchange membrane fuel cell (PEMFC), it is important to accurately evaluate the durability of the polymer membrane in a short time. The test conditions for chemically accelerated durability evaluation of membranes are high voltage, high temperature, low humidity, and high gas pressure. It can be said that the protocol is developed by changing these conditions. However, the relative influence of each test condition on the degradation of the membrane has not been studied. In chemical accelerated degradation experiment of the membrane, the influence of 4 factors (conditions) was examined through the factor experiment method. The degree of degradation of the membrane after accelerated degradation was determined by measuring the hydrogen permeability and effluent fluoride ion concentration, and it was possible to determine the degradation order of the polymer membrane under 8 conditions by the difference in fluoride ion concentration. It was shown that the influence of the membrane degradation factor was in the order of voltage > temperature > oxygen pressure > humidity. It was confirmed that the degradation of the electrode catalyst had an effect on the chemical degradation of the membrane.

Effect of Low Pressure Fog and External Watering on the Fruit Quality of Korean Melon Grown in Sumer (여름철 참외 재배시 저압포그 및 외부살수가 과실의 품질에 미치는 영향)

  • Shin, Yong Seub;Lee, Ji Eun;Kim, Min Ki;Do, Han Woo;Park, Jong Tae
    • Journal of Bio-Environment Control
    • /
    • v.25 no.1
    • /
    • pp.24-29
    • /
    • 2016
  • The objective of this study was to examine the changes in temperature drop and fruit production due to low pressure fog system in plastic greenhouses during summer cultivation of Korean melon. The indoor temperature of plastic house was dropped by $7.6^{\circ}C$ compared to control on July 26th, 2015 from 10:00 to 18:00. Fruit weight was smaller and lighter by 96g compared to control. The sugar content and color parameter were also enhanced due to application of low pressure fog system. The fraction of malformed fruits was decreased by 15.3% in plots where low pressure fog system was applied. The fraction of marketable fruit and yield were increased by 15.3% and 26% compared to control, respectively. As a result, high quality fruit production within plastic house of summer was increased by applying low pressure fog system and it is positively affected the drop of indoor temperature.

Nonstoichiometry of the Tungsten Oxide (산화 텅스텐의 비화학량론)

  • Ryu, Kwang Hyun;Oh, Eung Ju;Kim, Keu Hong;Yo, Chul Hyun
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.3
    • /
    • pp.157-162
    • /
    • 1995
  • The x values and electrical conductivities of the nonstoichiometric compounds $WO_{3-x}$ have been measured in the temperature range from 350 to 700$^{\circ}C$ under oxygen partial pressure of $2{\times}10_{-1}\;to\;1{\times}10_{-5}$ atm. The enthalpy of the defect formation shows an endothermic process, and the oxygen pressure dependence of the defect formation or 1/n varies from -1/5.2 to -1/5.9. The activation energy and 1/n value for the electrical conductivity are 0.24~0.29 eV and -1/4.3~-1/7.6, respectively. The Tungsten Oxide as a n-type semiconductor has predominently defect model of singly charged oxygen vacancy at low temperature, and of doubly charged oxygen vacancy at high temperature.

  • PDF

A Study of the Single Crystal Growth of $Ag_2S$ Mixed Conductor and it$s Characteristics (혼합 반도체 $Ag_2S$의 단결정 성장 및 특성에 관한 연구)

  • 김병국;신명균;윤종규
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.2 no.1
    • /
    • pp.76-85
    • /
    • 1992
  • ${\beta}-$Ag_2S$(high temperature phase) was grown by solid/vapour reaction growth based on solid -state electrochemisty. In S/V growth, one of the reactants, silver ion, is supplied to the growth surface through the solid $Ag_2S$ from one side and the other reactants, surfur, is transported in the phase of vapour from the other side. With the sufficient supply of S vapour, the growth rate increased as increasing $T_d$(decomposition temperature of $Ag_2S$) and ${\Delta}T$ between $T_d$ and $T_g$(temperature of growth surface). At low S vapour pressure, growth rate decreased with decreased vapour pressure and ${\beta}-$Ag_2S$ was grown in the form of whisker, when Ag+ion is sufficiently supplied. The measured values of electronic conductivity of ${\beta}-$Ag_2S$ showed that electronic conductivity of the poly crystal was larger than that of single crystal.

  • PDF

Low Temperature Fluidity Performance Evaluation of Composited Package Fuel Heater for Diesel Cars (디젤차량용 통합연료히터의 저온유동성 성능평가)

  • Lee, Jeong-Hwa;Park, Hyung-Won;Lee, Woong-Su;Lee, Young-Jea;Lee, Bo-Hee;Yoon, Dal-Hwan
    • Journal of IKEEE
    • /
    • v.18 no.1
    • /
    • pp.152-158
    • /
    • 2014
  • It is very important to supply the diesel fuel from fuel tank to combustion chamber in case of cold start procedure. the paraffin hydrocarbons are easily solidified at low fuel temperature and it can be blocking the fuel supply to the high pressure fuel pump. In order to reduce the fuel crystallization (Waxing), it have been used to develop not only cold flow additives but also the proper mounting design of fuel filter. Block heater in the fuel filter assembly have been also contained to improve the cold start and prevent blocking the fuel supply in Common Rail Direct Injection System. we can obtain the fuel pressure drop and fuel flow rate, power consumption of fuel heater to have the cold flow evaluation test with the saperated and composited fuel heater at the low ambient temperature, Due to evaluating cold flow performance of two block heater, we knew that composited package fuel heater was the excellent cold flow performance compared to separated type and obtained the parameters of cold flow.

Analysis of Combustion Characteristics of Bituminous and Anthracite Coal in a Fluidized Bed Combustor (유동층연소로에서 유연탄과 무연탄의 연소특성 해석)

  • Jang, Hyun Tae;Park, Tae Sung;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.10 no.4
    • /
    • pp.586-591
    • /
    • 1999
  • Mixed-firing of a bituminous and an anthracite coal carried out in a batch fluidized bed combustor(0.109 m-I.D., 0.9 m-height). Effect of particle size an mixing fraction of anthracite and bituminous coal combustion characteristics were studied. The temperature profiles and pressure fluctuation properties were measured to interpret the combustion characteristics in a batch fluidized bed combustor. The used domestic anthracite coal has heating value of 2010 kcal/kg and the imported high-calorific bituminous coal has heating value of 6520 kcal/kg. The combustion characteristics in a batch fluidized bed combustor could be interpreted by using pressure fluctuation properties and temperature increasing rates. It was found that the optimum anthracite mixing percentage could be predicted analyzing the combustion rate and fluidization characteristics, The optimum mixing fraction was about 30 %. The different burning region of fluidized bed combustor was measured by temperature increasing rates.

  • PDF

The preparation of $alpha-sexithiophene$ thin films by organic molecular beam deposition method and their characteristics (유기 분자선 증착법(OMBD)에 의한 $alpha-sexithiophene$ 박막의 제조와 특성)

  • 권오관;김영관;손병청;박주상;변대현;신동명;최종선
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.4
    • /
    • pp.361-367
    • /
    • 1998
  • $\alpha$-Sexithiophene ($\alpha$-6T) thin films were deposited by organic molecular beam deposition (OMBD) technique. The $\alpha$-6T was synthesized and purified by the sublimation method. The thin films of the $\alpha$-6T were deposited under various deposition conditions. The effects of deposition rate, substrate temperature, and vacuum pressure on the formation of these films have been studied. The molecular orientation, crystallinity, and surface morphology of $\alpha$-6T films were investigated with angle-resolved UV/visible absorption spectroscopy, X-ray diffractometry (XRD), and atomic force microscopy (AFM). It was found that the crystalline structure of $\alpha$-6T films was monoclinic and independent uppon substrate temperature, deposition rate, and deposition pressure. On the other hand, the $\alpha$-6T molecules in the film deposited at a low deposition rate, higher substrate temperature, and under a high vacuum tended to be aligned perpendicular to the substrate.

  • PDF

A Study on the 1-Way FSI Analysis for Shutter of Side Jet Thruster (측추력기 Shutter의 단방향 유체-구조 연성해석에 관한 연구)

  • Ko, Jun Bok;Seo, Min Kyo;Lee, Kyeong Ho;Baek, Ki Bong;Cho, Seung Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1359-1365
    • /
    • 2014
  • In this study, 1-way fluid structure interaction analysis(FSI) for the shutter, component of side jet thruster was performed to evaluate the safety. Driving torque to open nozzle, thermal and high pressure load of hot gas was applied to shutter. Thus, the shutter must be designed to endure this load during combustion. We carried out computational fluid dynamics analysis to obtain the pressure, temperature, and heat transfer coefficient of hot gas of side jet thruster. We then used the data as the load condition for a thermal structural analysis using a mapping method. The locations with the maximum stress and temperature distributions were found. We compared the maximum stress with the tensile stress of shutter material according to temperature to evaluate the safety. We also analyzed the radial deformation of the shutter to set the proper interface gap with the side jet thruster parts.

Chemical vapor deposition of copper thin films for ultra large scale integration (초고집적회로를 위한 구리박막의 화학적 형성기술)

  • 박동일;조남인
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.1
    • /
    • pp.20-27
    • /
    • 1997
  • We have investigated the formation techniques of copper thin films which would be useful for sub-quarter-micron integrated circuits. A chemical vapor deposition technology has been tried for the better side wall formation of the thin films, and a metal organic compound, named (hface)Cu(VTMS) (hexafluoroacetylacetonate vinyltrimethylsilane copper(I)) was used as the precursors. We have deposited the copper thin films on TiN and $SiO_2$substrates. The film resistivity and deposition selectivity have been measured as functions of substrate temperature and chamber pressure. Best electrical properties were obtained at $180^{\circ}C$ of substrate temperature and 0.6 Torr of chamber pressure. Under the optimum deposition conditions, polycrystalline copper structures were observed to be grown, and the deposition rate of 120 nm/min was measured. The electrical resistivity as low as 0.25$mu \Omega$.cm, and the surface roughness of 15.5 nm were also measured. These are the suitable electrical and material properties required in the sub-quarter-micron device fabrication. Also, in the substrate temperature range of 140-$250^{\circ}C$, high deposition selectivity was observed between TiN and $SiO_2$.

  • PDF

Effects of Different Marination Conditions on Quality, Microbiological Properties, and Sensory Characteristics of Pork Ham Cooked by the Sous-vide Method

  • Jeong, Kiyoung;O, Hyeonbin;Shin, So Yeon;Kim, Young-Soon
    • Food Science of Animal Resources
    • /
    • v.38 no.3
    • /
    • pp.506-514
    • /
    • 2018
  • The aim of this study was to evaluate the effects of marinade under different conditions (temperature and vacuum) on pork ham cooked by the sous-vide method ($61^{\circ}C$ and 98.81% vacuum for 45 min). Control group was non-marinade pork ham. The samples were marinated under 1 of 4 conditions: $4^{\circ}C$, 98.81% vacuum (treatment group $T_1$); $4^{\circ}C$, atmospheric pressure ($T_2$); $20^{\circ}C$, 98.81% vacuum ($T_3$); and $20^{\circ}C$, atmospheric pressure ($T_4$). The pH value was higher in the control (6.02) than in the treatment groups (4.30-4.42, p<0.001). Shear force was the lowest in the control: 18.14 N. Lightness and redness values were higher in the control (p<0.001). The chroma value significantly decreased from 12.74 to 7.55 with marinade (p<0.001). Total viable and coliform counts of raw meat were 84.6 and 3.67 Log CFU/g, respectively. After the marinade, the total viable count decreased to 3.00-14.67 Log CFU/g (p<0.001). Coliforms were not detected. After sous-vide cooking, no viable microorganisms were detected in any group. Treatment groups generally showed high scores on consumer preference. The marinade and sous-vide cooking had a positive effect on sensory characteristics. They provided safe conditions for sanitary evaluation. As a result, it appears that marinade at refrigeration temperature is better than that at room temperature.