• Title/Summary/Keyword: high temperature high pressure

Search Result 4,161, Processing Time 0.031 seconds

A Study on The 5-Axis CNC Machining of Impeller (임펠러 5-축 CNC 가공에 관한 연구)

  • 조현덕
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.4
    • /
    • pp.19-26
    • /
    • 1997
  • The manufacture of an impeller typically requires the 5-axis CNC machining, since the impeller is usually under working conditions such as high speed, high temperature, and high pressure. Thus, this study contributes to development of an exclusive CAM system for effective 5-axis CNC machining of a ruled surface type impeller. In this study, the sampled impeller is made of blades and a body and the blade consists of ruled surfaces between hub curve and shroud curve. In the post processing for 5-axis NC part program, the cutter axis direction vector is the straighten vector on ruled surface. The position of ball center in ball end mill cutter is decided on the interference check between the cutter and body surface of impeller using with the modified z-map method that z-axis is the same of cutter axis direction vector. The exclusive CAM system for an impeller developed in this study was very effective for designs and 50-axis machining of a ruled surface type impeller.

  • PDF

Thermohydrodynamic Lubrication Analysis of High Speed Journal Bearing Considering Variable Density and Specific Heat: Part I - Shaft Speed Effect (변화하는 밀도와 비열을 고려한 고속 저어널 베어링의 열유체 윤활해석 I-축 속고영향)

  • Chun, Sang-Myung;Jang, Si-Youl
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.287-292
    • /
    • 2001
  • Under the condition of variable density and specific heat, maximum pressure, maximum temperature, bearing load, friction and side leakage in high-speed journal bearing operation are examined. The results are compared with the calculation results under the conditions of constant density and specific heat, and variable density and constant specific heat. It is found that the condition of variable density and specific heat play important roles in determining friction and load of journal bearing at high speed operation.

  • PDF

NUMERICAL SIMULATION OF HIGH-SPEED FLOWS WITH SHOCK WAVE TURBULENT BOUNDARY LAYER INTERACTIONS (충격파와 난류경계층의 상호작용에 대한 수치해석)

  • Moon S. Y.;Sohn C. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.51-59
    • /
    • 2000
  • The Interactions of shock wave with turbulent boundary layers in high-speed flows cause complex flowfields which result in increased adverse pressure gradients, skin friction and temperature. Accurate and reliable prediction of such phenomena is needed in designing high-speed propulsion systems. Such analyses of the complex flowfields require sophisticated numerical scheme that can resolve interactions between shock wave and boundary layers accurately. Therefore the purpose of the present. article is to introduce an accurate and efficient mixed explicit-implicit generalized Galerkin finite element method. To demonstrate the validity of the theory and numerical procedure, several benchmark cases are investigated.

  • PDF

A STUDY ON THE VOLUMETRIC EFFICIENCY OF HIGH SPEED MULTI-CYLINDER AND ROTARY COMPRESSOR (고속다기통 및 회전식 압축기의 체적효율)

  • OH Hoo Kyu;CHO Kweoun Ok
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.12 no.1
    • /
    • pp.13-18
    • /
    • 1979
  • Volumetric efficiency is a determining factor for tile measurement of compessor capacity, but it is practically hard to take an accurate measurement of capacity characteritics so that most of users trust the data of makers catalogue. We often realized the discrepancy in their data with actual capacity. This study was attemped to establish the basic data of capacity characteristics of compressor by measuring volumetric efficiency of high speed multi-cylinder compressor and rotary compressor. The volumetric efficiency was calculated based on the quantity of the flow of ammonia vapor and pressure difference in suction state of orifice plate and compressor. The volumetric efficiency of high speed multi-cylinder compressor was $37-61\%$ and that of rotary compressor was $57-82\%$ when compression ratio was in the range of 4-12. The discrepancy in volumetric efficiency at an equal evaporating temperature between the makers catalogue and the measured data was $5.5\%$.

  • PDF

Synthesis of Intermetallics and Nanocomposites by High-Energy Milling

  • Bernd F. Kieback;H. Kubsch;Alexander Bohm;M. Zumdick;Thomas Weissgaerber
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.416-421
    • /
    • 2002
  • Elemental powders are used in high energy milling processes for the synthesis of new compounds. The low temperature solid state reactions during milling in inert gas atmosphere may result in intermetallic phases, carbides, nitrides or silicides with a nanocrystalline structure. To obtain dense materials from the powders a pressure assisted densification is necessary. On the other side the defect-rich microstructure can be used for activated sintering of elemental powder mixtures to obtain dense bodies by pressureless sintering. Results are discussed for nanocrystalline cermet systems and for the sintering of aluminides and silicides.

Physical and electrical properties of a-C:H deposited by RF-PECVD (RF-PECVD에 의해 증착된 a-C:H 박막의 물리적 및 전기적 특성 분석)

  • 김인준;김용탁;최원석;윤대호;홍병유
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.296-300
    • /
    • 2002
  • Thin films of Hydrogenated amorphous carbon(a-C:H) are generally exhibited by high electrical resistivities from 10$^2$ to 10$\^$16/ Ω$.$cm, resulting in an interesting material for high power, high temperature MIS devices applications. The hydrogenated amorphous carbon(a-C:H) films were deposited on silicon and glass using an rf plasma enhanced CVD method. The resultant film properties were evaluated in the respect of material based on r.f. power variation. The hydrogenated amorphous carbon(a-C:H) films of thickness ranging from 30 to 50 m were deposited at the pressure of 1 ton with the mixture of methane and hydrogen. We have used rf-IR( courier transform IR) and AFM(Atomic force microscopy) for determining physical properties and current-voltage(I-V) measurement for electrical Properties.

  • PDF

A Study on the Hot Carrier Effect Improvement by HLDBD (High-temperature Low pressure Dielectric Buffered Deposition)

  • Lee, Yong-Hui;Kim, Hyeon-Ho;Woo, Kyong-Whan;Kim, Hyeon-Ki;Yi, Jae-Young;Yi, Cheon-Hee
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.1042-1045
    • /
    • 2002
  • The scaling of device dimension and supply voltage with high performance and reliability has been the main subject in the evolution of VLSI technology, The MOSFET structures become susceptible to high field related reliability problems such as hot-electron induced device degradation and dielectric breakdown. HLDBD(HLD Buffered Deposition) is used to decrease junction electric field in this paper. Also we compared the hot carrier characteristics of HLDBD and conventional.

  • PDF

Measurement of Birefringence Distribution in Optical Disk Substrates Fabricated by Injection-Compression Molding (사출압축성형을 통한 광디스크 기판 성형 및 복굴절의 측정)

  • 김종성
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.218-224
    • /
    • 1999
  • It is necessary to improve mechanical and optical properties in the optical disk substrates as the information storage devices with high storage density using short wavelength laser are being developed. Injection compression molding is regarded as the most suitable process to manufacture optical disk substrates with high is regarded as the most suitable process to manufacture optical disk substrates with high dimensional accuracy low residual stresses and superb optical properties In the present study polycarbonate optical disk substrates were fabricated by injection compression molding and the birefringence regarded as one of the most important optical properties for optical disk is measured. The effects of various processing conditions upon the development of birefringence distribution were examined experimentally. It was found that the value of the birefringence distribution were very sensitive to the mold wall temperature history and the variance of the birefringence distribution in the radial direction was affected by the level of the packing and the compression pressure.

  • PDF

Development of a Test Facility for Cold-air Performance of Small Axial Turbine (소형 축류터빈의 상온 성능시험기 개발)

  • 손창민;차봉준;이대성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1780-1786
    • /
    • 1995
  • The main goal of the present study is to establish the techniques and methodolgies of turbine performance test through evaluating the objective turbine test piece, and checking the reliability of the self-developed test facility by performing a series of turbine tests under ambient temperature condition. A high speed coupling, a lubrication system and a test bed of the test facility were modified through a series of preliminary test in order to reduce the vibration and oil leakage. The flowrate control of the test facility and data acquisition were accomplished by using a software called "Labview" The measurement of shaft horse power and control of rotational speed according to the conditions of turbine rotation were performed by a separate system. The preliminary evaluation of the measured data suggests that the developed test facility and the test technique can be used reliably for the performance test of turbines with the minor improvement.provement.

Failure of Ammonia Synthesis Converter Due to Hydrogen Attack and Its On-Stream Assessment Using ToFD Method

  • Albiruni, Farabirazy;Lee, Joon-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.132-137
    • /
    • 2008
  • A failure analysis of ammonia converter which suffered hydrogen attack in two years since its initial operating time was presented. It is constructed from 2.25 Cr.1 Mo steel. Analysis showed that the failure on closing seam weld joint was due to local improper post weld heat treatment (PWHT). Improper PWHT can introduce high residual stresses in thick-walled pressure vessel. High residual stress level in weld joint is very prone to hydrogen attack for any components which are operating in hydrogen gas environment. The repair procedures based on the principle to decrease the residual stress then proposed. The repair was controlled very carefully by applying several nondestructive tests in the each stage of repair. To assure the successful of the proposed repair, after one year since repair time, high temperature ultrasonic and TOFD methods were applied on-stream to this equipment in order to evaluate its post repair condition. The two methods showed good results on the repaired area.

  • PDF