• Title/Summary/Keyword: high strength materials

Search Result 3,818, Processing Time 0.038 seconds

Improvement of Machinability of PM Steels by Addition of $CaCO_3$ Based Compound

  • Ishii, Yoshinari;Kawase, Kinya
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.578-579
    • /
    • 2006
  • We investigated that the effect of $CaCO_3$ based compound on machinability of two types of PM steels. One is a copper steel which is selected as a general PM steel, and the other is a diffusion alloyed steel selected as a high strength PM steel. It is found that $CaCO_3$ based compound addition improves machinability in drilling of both of the PM steels. Although the compound addition degrades the mechanical properties of PM steels, it is considered that decrease of the properties can be compensated by increasing density.

  • PDF

Development on the fiber-reinforced materials for low-voltage circuit breakers(I) (저압 배선용 차단기용 섬유강화 복합재료 개발(I))

  • Lee, Chang-R.;Song, Tae-H.;Kim, Jin-S.;Kim, Duck-J.;Lee, Doo-H.;Lee, Kwan-H.
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.127-129
    • /
    • 2002
  • A new type of fiber-reinforced polymeric materials for the main body and the arc chamber of the low-voltage circuit breakers was developed. The tensile and the flectional strength of the three kinds of thermoplastic resins for the cover of MCCBs(Molded case circuit breakers) increase much higher than those made of BMC that has been used. In a high current-breaking test, an experimental MCCB with the new insulating material showed no-cracks on the bodies.

  • PDF

Analysis of Deformation Characteristics for Deep Drawing of Laser-welded Dlank (레이저 용접 소재의 디프 드로잉 성형특성 해석)

  • Kim, Yeong-Seok;Ha, Dong-Ho;Jeong, Gi-Jo;Seo, Man-Seok
    • Transactions of Materials Processing
    • /
    • v.7 no.6
    • /
    • pp.519-529
    • /
    • 1998
  • In automotive industries the stamping of laser-welded blank gives many merits which bring about dimensional accuracy, strong body assembly and high productivity. However the welding of blanks with different thickness or/and different strength materials introduces many challenging formability problems for process development and tool design. in this paper the deformation characteristics for deep drawing process of laser-welded blank with different thickness sheets are investigated by experiment as well as by FEM simulation. The blank holding force ratio to avoid the movement of weld line was suggested and compared with the experimental result for cylindrical and rectangular cup drawing process. The optimal location of weld line in laser-welded blank with different thickness sheets is calculated to compensate for the movement of weld line on deep drawing process. In addition the effect of location of weld line on formability is clarified using FEM simulation.

  • PDF

Design of Gate Locations, Molding Conditions, and Part Structure to Reduce the Warpage of Short-Fiber Reinforced Injection Molded Part (단섬유 보강 사출성형품의 휨 감소를 위한 게이트 위치, 성형 조건 및 제품 구조 설계)

  • Choi, D.S.
    • Transactions of Materials Processing
    • /
    • v.17 no.6
    • /
    • pp.443-448
    • /
    • 2008
  • Fiber reinforced injection molded parts are widely used in recent years because of their improved properties of materials such as specific stiffness, specific strength, and specific toughness. The demand for products with high precision is increasing and it is important to minimize the warpage of the products. The warpage of short-fiber reinforced product is caused by anisotropy induced by fiber orientation as well as the residual stresses induced during the molding process. In order to reduce the warpage of the part, it is important to achieve successful mold design, processing control, and part design. In the present study, the design of gating system, molding condition, and part structure were carried out and verified with numerical analysis using a commercial CAE code Moldflow. The numbers and locations of gates were iteratively determined, and the molding conditions which can decrease the warpage of the part were investigated. Finally, slight structural modification of the part was conducted to reduce the locally concentrated warpage.

The virtual penetration laboratory: new developments for projectile penetration in concrete

  • Adley, Mark D.;Frank, Andreas O.;Danielson, Kent T.;Akers, Stephen A.;O'Daniel, James L.
    • Computers and Concrete
    • /
    • v.7 no.2
    • /
    • pp.87-102
    • /
    • 2010
  • This paper discusses new capabilities developed for the Virtual Penetration Laboratory (VPL) software package to address the challenges of determining Penetration Resistance (PR) equations for concrete materials. Specifically, the paper introduces a three-invariant concrete constitutive model recently developed by the authors. The Advanced Fundamental Concrete (AFC) model was developed to provide a fast-running predictive model to simulate the behavior of concrete and other high-strength geologic materials. The Continuous Evolutionary Algorithms (CEA) automatic fitting algorithms used to fit the new model are discussed, and then examples are presented to demonstrate the effectiveness of the new AFC model. Finally, the AFC model in conjunction with the VPL software package is used to develop a PR equation for a concrete material.

Study on Electrically Assisted Pressure Solid State Joining Between Aluminum Alloys (통전압접을 활용한 알루미늄 소재 간 고상접합에 관한 연구)

  • Choi, H.;Lee, S.;Kim, Y.;Hong, S.T;Han, H.N.
    • Transactions of Materials Processing
    • /
    • v.31 no.6
    • /
    • pp.337-343
    • /
    • 2022
  • Electrically assisted pressure joining (EAPJ) utilizes electric current-induced kinetic enhancement to achieve solid state diffusion bonding within a short time. In this study, aluminum alloy specimens, which are known as a hard-to-weld metal, were successfully solid-state joined through EAPJ. The bonding process was performed in two ways: continuous direct current (CDC), which applies relatively low current density, and pulsed direct current (PDC), which applies high current density. It was observed that the bonding strength was higher in PDC than in CDC. The microstructure of the joint was characterized using 3D X-ray microscopy (XRM) and electron backscatter diffraction (EBSD).

Effect of Graphitic Nanofibers on Interfacial Adhesion and Fracture Toughness of Carbon Fibers-reinforced Epoxy Composites

  • Kim, Seong-Hwang;Park, Soo-Jin
    • Composites Research
    • /
    • v.34 no.2
    • /
    • pp.82-87
    • /
    • 2021
  • The mechanical properties of carbon fiber-reinforced epoxy composites (CFRPs) are greatly dependent on the interfacial adhesion between the carbon fibers and the epoxy matrix. Introducing nanomaterial reinforcements into the interface is an effective approach to enhance the interfacial adhesion of CFRPs. The main purpose of this work was to introduce graphitic nanofiber (GNFs) between an epoxy matrix and carbon fibers to enhance interfacial properties. The composites were reinforced with various concentrations of GNFs. For all of the fabricated composites, the optimum GNF content was found to be 0.6 wt%, which enhanced the interlaminar shear strength (ILSS) and fracture toughness (KIC) by 101.9% and 33.2%, respectively, compared with those of neat composites. In particular, we observed a direct linear relationship between ILSS and KIC through surface free energy. The related reinforcing mechanisms were also analyzed and the enhancements in mechanical properties are mainly attributed to the interfacial interlocking effect. Such an effort could accelerate the conversion of composites into high performance materials and provide fundamental understanding toward realizing the theoretical limits of interfacial adhesion and mechanical properties.

A strategy to prepare internally plasticized PVC using a castor oil based derivative

  • Chu, Hongying;Ma, Jinju
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.11
    • /
    • pp.2296-2302
    • /
    • 2018
  • Internally plasticized PVC was prepared via chemical reaction of azide PVC and alkynyl group containing castor oil methyl ester. The chemical structure of alkynyl group containing castor oil methyl ester and internally plasticized PVC was characterized with FT-IR and $^1H$ NMR. Properties of internally plasticized PVC, including thermal stability, tensile tests and resistance to extraction in different solvents, was investigated. The results showed that alkynyl group containing castor oil methyl ester, as internal plasticizer of PVC, not only decreased the $T_g$ of PVC from $84.6^{\circ}C$ to $41.6^{\circ}C$ efficiently, but also presented no plasticizer loss in five different solvents. The tensile tests showed that elongation at break and tensile strength of internally plasticized PVC was 353.8% and 18.1 MPa. The internally plasticized PVC has potential application in replacing the traditional PVC material in PVC products with high durability.

Microstructure of Precipitation Strengthened Ll2-type Co3Ti Intermetallic Compound

  • Han, Chang-Suk;Chun, Chang-Hwan;Han, Seung-Oh
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.11
    • /
    • pp.694-698
    • /
    • 2009
  • The $Co_{3}Ti$ phase hardens appreciably by the fine precipitation of disordered fcc Co-rich phase upon aging after quenching from solution annealing temperature. Transmission electron microscope (TEM) observations revealed that the precipitates are platelet in shape, lying nearly parallel to the {100} planes of the $Ll_{2}$-ordered matrix, and perfectly coherent with the matrix lattice at the beginning of aging. The high temperature strength increases appreciably with the fine precipitation of disordered Co-rich phase over the whole temperature range investigated. TEM observations of the under-aged and deformed alloys revealed that superdislocations are pinned by precipitates indicating an attractive interaction between dislocations and precipitates. In the over-aged state, thin twins are introduced in the fcc Co-rich precipitates during deformation.

Health monitoring of carbon fiber-reinforced polymer composites in γ-radiation environment using embedded fiber Bragg grating sensors

  • Jing Zhong;Feida Chen;Yuehao Rui;Yong Li;Xiaobin Tang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.3039-3045
    • /
    • 2023
  • Fiber-reinforced polymer (FRP) composites are considered suitable candidates for structural materials of spacecrafts due to their excellent properties of high strength, light weight, and corrosion resistance. An online health monitoring method for FRP composites must be applied to space structures. However, the application of existing health monitoring methods to space structures is limited due to the harsh space environment. Here, carbon fiber-reinforced polymer (CFRP) composites embedded with fiber Bragg grating (FBG) sensors were prepared to explore the feasibility of strain monitoring using embedded FBG sensors in γ-radiation environment. The analysis of the influence of radiation on the strain monitoring demonstrated that the embedded FBG can be successfully applied to the health monitoring of FRP composites in radiation environment.