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ABSTRACT

Fiber-reinforced polymer (FRP) composites are considered suitable candidates for structural materials of
spacecrafts due to their excellent properties of high strength, light weight, and corrosion resistance. An
online health monitoring method for FRP composites must be applied to space structures. However, the
application of existing health monitoring methods to space structures is limited due to the harsh space
environment. Here, carbon fiber-reinforced polymer (CFRP) composites embedded with fiber Bragg
grating (FBG) sensors were prepared to explore the feasibility of strain monitoring using embedded FBG
sensors in y-radiation environment. The analysis of the influence of radiation on the strain monitoring
demonstrated that the embedded FBG can be successfully applied to the health monitoring of FRP
composites in radiation environment.
© 2023 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Fiber-reinforced polymer (FRP) composites are commonly used
in the aerospace, automotive, and construction industries due to
their superior properties of light weight, high strength, corrosion
endurance, fatigue resistance, and strong designability [1-5].
Hence, FRP composites demonstrate high potential as structural
materials for spacecrafts. However, the space environment where
spacecrafts operate can significantly degrade the properties of FRP
composites because of its extremely harsh characteristics of high
vacuum, thermal cycles, atomic oxygen, ultraviolet light, radiation,
and presence of space debris [6—8]. FRP composites exposed to the
space environment suffer from strength change, interface
debonding, surface cracking, brittle fracture, molecular chain
breakage, and other types of damage [9—16]. Thus, an effective
health monitoring method for FRP composites is crucial to ensure
their long-term reliability in service.

Numerous health monitoring methods for FRP composites, such
as ultrasonic detection radiographic inspection, acoustic emission
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monitoring, strain gauge testing, and optical fiber detection, have
been proposed [17—25]. Although ultrasonic and radiographic in-
spection methods are mature and widely used, they can only be
utilized for offline testing. Frequent deboning of the interface be-
tween piezoelectric sensors and composites in acoustic emission
inspections introduces noise during the propagation process of
elastic waves in materials. Strain gauge sensors are easily
embedded in composite materials, but their electrical signals are
susceptible to electromagnetic interference. By contrast, optical
fiber Bragg grating (FBG) sensors have attracted considerable
research attention in the field of damage detection due to their
embeddability, anti-electromagnetic interference capabilities and
characteristics of wavelength encoded. Previous studies verified the
feasibility of the embedded FBG sensor technique in dynamic stress
monitoring, thermal cycle detection, and thermal deformation
measurement [26—30]. However, the harsh environment may also
exert some effect on the monitoring method itself. When FBG
sensors are applied to radiation environment for sensing, it was
found that high-energy ionizing radiation can cause signals drifting
and transmission loss to FBGs, which can introduce errors for the
sensing of temperature or strain [31—33]. On the basis, relevant
studies have focused on improving the radiation resistance of FBGs
mainly by fiber composition modulation, grating inscription tech-
niques and pre-processing method to mitigate the effects of
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radiation on FBGs [34—36]. However, it is still unknown whether
FBG sensors are capable for materials monitoring in radiation
environments.

In this work, FBG sensors were embedded in FRP composites for
strain monitoring of materials in y-radiation environment. The
quantitative model of the relationship between FBG wavelength
shift and FRP strain was established, and the relationship between
FBG wavelength and temperature was determined. Moreover, the
irradiation experiment proves that the compatibility between FBG
and FRP materials maintains well after irradiation and the co-
efficients of strain sensitivity of FBG sensors embedded in FRP
composites are slightly affected by the radiation. Hence, the
embedded FBG is very suitable for materials monitoring in radia-
tion environments.

2. Working principle of FBG

FBG sensor is an optical fiber with a regular distribution of
grating. The grating is inscribed inside the fiber core via exposure to
ultraviolet light or femtosecond laser. The refractive index of optical
fiber varies periodically at a certain length. Notably, FBG is a kind of
superior bandpass filter that can reflect a narrow spectrum of
incident light and transmit the rest at the same time [37]. The
structure schematic is shown in Fig. 1. Bragg wavelength () is the
central wavelength in the reflection spectrum of FBG and defined as
follows:
Agp =214, (1)
where ne is the effective refractive index of the optical fiber core
and 4 is the period of Bragg grating. Temperature and strain can
affect ne and 4 and further lead to shifting in Ag.The wavelength
shift subjected to strain and temperature is expressed as follows:
Adg=K.Ae + K7 AT, (2)
where AAg, Ae, and AT represent the shift of Ag, strain, and tem-
perature, respectively; K. and Kr are coefficients of strain and
temperature sensitivity, respectively, which are related to param-
eters of fiber and grating [38]. The wavelength shift is linearly
proportional to the variation in temperature and strain to ensure
that strain and temperature can be monitored by FBG.
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3. Experiments
3.1. Selection of FBG sensors

For the reliable strategy for monitoring and sensing in radiation
environments, FBG sensors with resistance to radiation should be
selected properly. Currently, the FBGs written on pure silica fibers
or F-doped fibers are considered to be of low radiation sensitivity,
which present lower radiation loss and wavelength shift than that
written on the standard Ge-doped fibers [39—41]. Additionally,
FBGs fabricated with femtosecond laser developed in recent years,
compared to the conventional UV laser inscription technique, show
better high-temperature stability and better resistance to
radiation-induced wavelength shift [42—45]. Here, the resistance to
radiation and commercial access of various types of FBG sensors
have been taken into comprehensive consideration. In this study,
FBG sensors inscribed onto pure silica fiber SM1250SC(9/125)P
(FemtoFiberTec, Germany) with good resistance to radiation were
selected. The FBGs were written by femtosecond laser point-by-
point writing technique and with a polyimide coating and a
grating length of 4 mm.

3.2. Specimen manufacturing

Carbon fiber-reinforced polymer (CFPR) laminates in this study
were manufactured using the mold pressing technique with uni-
directional carbon fiber/epoxy prepreg USN15000/7901/
RC33(Guangwei Composites Co., China). The dimensions of spec-
imen were 90 mm x 13 mm x 2 mm (length x width x thickness)
according to the ASTM D7264 standard. The stacking sequence was
[04/904/04/904/04]. FBG sensors were located between the third and
fourth prepreg layers along the direction of the carbon fiber, that is,
[03/FBG/0/904/04/904/04]. The ends of FBG sensors were taken out
from the side of the laminate, inserted into the Teflon tube, and
sealed with silicone rubber to prevent the optical fiber from
breaking due to the curing of the resin. The schematic of the FBG
embedded in CFRP composites is shown in Fig. 2. The temperature
in the curing process was raised from room temperature to 80 °C at
1 °C/min, maintained for 0.5 h, increased to 120 °C at 1 °C/min, and
held for 1.5 h with a pressure of 12 MPa. Finally, the laminates were
cooled to room temperature naturally.
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Fig. 1. Structure schematic of the FBG sensor consisting of cladding, fiber core, and Bragg grating. The regular distribution of grating allows the reflection of a narrow spectrum of

incident light.
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Fig. 2. Schematic of the FBG embedded in CFRP composites.

3.3. Measurement of the coefficient of strain sensitivity

Coefficients of strain sensitivity were detected with a mechan-
ical testing machine WDW-100 (WANCE, China) under three-point
flexural loading. The reflected signals of FBG sensors were recorded
using an FBG demodulator SuperHawk 6000 (Hope-Excellence In-
formation Technology Co., China). As shown in Fig. 3, the specimen
embedded with FBG was secured on the fixture with the margin of
FBG connected to the wavelength demodulator, and the demodu-
lator was connected to a laptop. The loading speed was controlled
at 1 mm/min.

3.4. Effects of temperature on FBG sensors

FBG sensors were placed in a high-low-temperature test
chamber for measuring their response to the temperature range of
0°C-50 °C. Coefficients of temperature sensitivity of FBG before and
after being embedded in CFRP were measured. The initial tem-
perature was set to 50 °C, and the next temperature decreased in
gradients of 10 °C. The temperature was stabilized for 30 min after
each adjustment, and wavelength data were recorded.

3.5. y-radiation experiments

A®0Co y-radiation facility (Nanjing University of Aeronautics and
Astronautics Irradiation Center) was employed as the radiation
resource. Embedded FBGs and free FBGs are presented in Fig. 4 and
Table 1, where “E” and “F” represent embedded FBGs and free FBGs,
respectively. All the grating of free and embedded FBGs are not
bare, which are covered with a polyimide coating. Free FBGs were
attached to the acrylic plate with polyimide tape to prevent
wavelength interference due to optical fiber bending. The irradia-
tion time were 10, 20 30, 49, 69, and 98 h. The irradiation dose rate

Mechanical
testing machine |

S id
Ll

FBG
demodulator

Specimen embedded
with FBG

Fig. 3. Experimental setup for testing the coefficient of strain sensitivity.
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Fig. 4. Photos of embedded FBGs and free FBGs (“E” and “F” represent embedded FBGs
and free FBGs, respectively).

Table 1
FBG sensors in this work (“E” and “F” represent embedded FBGs and free FBGs,
respectively).

FBG label
Embedded/Free

S

was 10.19 kGy/h, and irradiation doses were 101.9, 203.8, 305.7,
499.3, 703.1, and 998.6 kGy, which were calibrated with a silver
dichromate dosimeter. Wavelength data of FBG sensors were
recorded at 30 °C after each dose of irradiation.

4. Results and discussion
4.1. Coefficients of strain sensitivity of FBG sensors

The linear relationship between wavelength shift and the
applied load is illustrated in Fig. 5a, in which data are normalized to
the unloaded wavelength. The linear fitting curves of the wave-
length shift versus applied strain are shown in Fig. 5b, which refers
to the strain of composites rather than FBG sensors. Slopes of
curves, that is coefficients of strain sensitivity (K.), are listed in
Table 2. The mechanical deformation and photoelastic effect result
in the wavelength shift of FBG under load. In addition, the linear
response of wavelength to strain reflects the satisfactory compati-
bility of embedded FBGs and composites. Curves of wavelength
versus strain will change abruptly because the strain that transfers
to FBG becomes uneven if FBG is delaminated with composites.

4.2. Effects of temperature on FBG sensors

The wavelength shift of free FBGs with temperature is shown in
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Fig. 5. Response of FBG sensors with applied strain. Relationship between the (a) wavelength of FBGs embedded in the CFRP and load and (b) wavelength shift of embedded FBGs

and applied strain (“E” represents the embedded FBG).

Table 2

Coefficients of strain sensitivity for embedded FBGs (“E” represents embedded FBG).
FBG label E-1 E-2 E-3
K. (pm/ue) -0.503 -0.513 —-0.564

Fig. 6a, in which data are normalized to the wavelength at 0 °C. The
wavelength shift of FBGs demonstrated a positive linear relation-
ship with temperature due to thermal expansion and thermo-optic
effect. Besides, thermal deformation of CFRP also affects the
wavelength of FBGs when FBGs are embedded in composites. The
response of FBG to temperature before and after being embedded in
CFRP is displayed in Fig. 6b. K7 values for each FBG used in this work
are listed in Table 3. According to the slope of the fitting curve, the
coefficient of temperature sensitivity of FBG increases after being
embedded in CFRP because the thermal expansion of CFRP leads to
the additional strain exerted on FBG. Furthermore, the wavelength
shift attributed to the thermal strain of CFRP was obtained when
the wavelength shift of the free FBG was subtracted from that of the
embedded FBG. The thermal strain of CFRP is insignificant in the
temperature range of 0 °C-50 °C. The interference of temperature
on strain measurement via FBG can be corrected on the basis of the
linear relationship between the temperature and FBG wavelength.
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Table 3
Coefficients of temperature sensitivity of FBGs before and after being embedded in
the CFRP in this work.

FBG label E-1 E-2 E-3 F-4 F-5 F-6
Ky before being embedded (pm/°C) 102 104 10.1 104 99 102
Ky after being embedded (pm/°C) 128 114 118 - - -

4.3. Effects of radiation on FBG sensors

The curves of wavelength shift versus temperature and applied
strain after a y-irradiation dose 0f 998.6 kGy are depicted in Fig. 7 to
investigate the effects of radiation on FBG sensors. As illustrated in
Fig. 7a, the wavelength shift is still linearly proportional to the
applied strain. Therefore, the FBG sensors remain well bonded to
the materials after irradiation. K, values of embedded FBGs after
irradiation are listed in Table 4. Although K. of each FBG varies
slightly after a y-irradiation dose of 998.6 kGy, the value is negli-
gible and within the experimentally allowed error range. Thus, the
FBG sensor is suitable for internal strain sensing of CFRP in radia-
tion environments. The curves of wavelength shift versus temper-
ature are shown in Fig. 7b. K7 values of free and embedded FBGs
after a y-irradiation dose of 998.6 kGy are listed in Table 5. Kt of
each FBG also changes slightly after irradiation.
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Fig. 6. Response of FBG sensors to ambient temperature. (a) Relationship between wavelength shift of free FBGs and temperature and (b) comparison of temperature sensitivity
measured by the FBG before and after being embedded in CFRP (“E” and “F” represent embedded FBG and free FBG, respectively).
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Fig. 7. Relationship between the wavelength of FBG and strain and temperature after a y-irradiation dose of 998.6 kGy. (a) Applied strain and (b) temperature (“E” and “F” represent

embedded FBG and free FBG, respectively).

Table 4
Coefficients of strain sensitivity for embedded FBGs after a y-irradiation dose of
998.6 kGy (“E” represents embedded FBG).

FBG label E-1 E-2 E-3

K. after irradiation (pm/ue) —0.495 -0.539 —0.596

Table 5

Coefficients of temperature sensitivity for free and embedded FBGs after a y-irra-
diation dose of 998.6 kGy (“E” and “F” represent embedded FBGs and free FBGs,
respectively).

FBG label E-1

124

E-2
11.8

E-3
114

F-4 F-5 F-6

Kr after irradiation (pm/°C) 10.8 10.6 10.5

4.4. Practical application in the monitoring of radiation-induced
strain

The wavelength shift of FBGs is presented in Fig. 8a, including
three embedded FBGs and three free FBGs, in the y-radiation dose
range of 0—998.6 kGy. The wavelength of three embedded FBGs

(a)
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Irradiation dose (kGy)

raises as the irradiation dose increases. Meanwhile, the wavelength
shift of three free FBGs after irradiation was also confirmed, given
that the refractive index of the quartz material is influenced by
high-energy rays. This phenomenon will lead to errors in the
monitoring of the FBG wavelength. This work considered that the
effect of radiation on the wavelength of embedded FBG lies in two
aspects. On one hand, the direct effect of y-radiation on the FBG
itself leads to a wavelength shift. On the other hand, the internal
strain of composites develops after irradiation, thereby altering the
wavelength of FBG.

In this study, the free FBGs were set as a control group to test the
wavelength shift caused by the direct effect of v radiation on FBGs.
To eliminate the direct effect of radiation on FBG sensors, the
average wavelength shift of three free FBGs was subtracted from
the wavelength shift of each embedded FBG, thus the wavelength
shift of FBG induced by the internal strain of composites was ob-
tained, as shown in Fig. S1. The internal strain of composites
induced by vy irradiation was further obtained according to Eq. (2)
and K, value in Table 4. The radiation-induced strain versus irra-
diation dose for three embedded FBGs is presented in Fig. 8b. The
radiation-induced strain increases with the increase of irradiation,
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Fig. 8. Monitored radiation-induced strain of CFRP in the y-irradiation dose of 0—988.6 kGy. (a) Wavelength monitored by free and embedded FBGs and (b) radiation-induced strain
of CFRP monitored by embedded FBGs (“E” and “F” represent embedded FBG and free FBG, respectively).
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which reaches a maximum when the irradiation dose is 203.8 kGy.
However, the radiation-induced strain decreases with the contin-
uous increase of irradiation dose. The radiation-induced strain
becomes a negative value and further increases in reverse as the
irradiation dose increases until it reaches 499.3 kGy. The average
radiation-induced strain of CFRP monitored by FBG is 906.2 e after
exposure to an irradiation dose of 998.6 kGy.

5. Conclusion

A monitoring technique based on embedded FBG was developed
in this study to assess the health status of CFRP composites in y-
radiation environment. The quantitative model of the relationship
between the FBG wavelength shift and CFRP strain was established.
The relationship between the temperature and FBG wavelength
shift was determined to correct the influence of temperature on
strain measurement. Furthermore, this work demonstrated the
negligible effect of radiation on coefficients of strain sensitivity and
verified the applicability of the FBG method in radiation environ-
ment. The relationship of material strain monitored by FBG versus
the radiation dose was acquired in the irradiation dose range of
0—988.62 kGy. In summary, strain detection based on FBG is an
effective health monitoring method for evaluating CFRP composites
exposed to radiation environment. This work provides a feasible
strategy for the nondestructive evaluation of health status of CFRP
composites in radiation environment. Meanwhile, a future inves-
tigation can focus on determining whether or not the effect of high-
dose radiation on the coefficient of strain sensitivity of FBG is
negligible. In addition, with the development of new fabrication
techniques, it is expected that FBG sensors with excellent resistance
to radiation will be commercially available in the near future. And
their low radiation-induced wavelength shift will contribute to
superiority for strain sensing in radiation environment.
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