DOI QR코드

DOI QR Code

A strategy to prepare internally plasticized PVC using a castor oil based derivative

  • Chu, Hongying (Department of Envionment and Chemical Engineering, Yellow River Conservancy Technical Institute, Kaifeng Key Laboratory of Green Coating Materials) ;
  • Ma, Jinju (Department of Envionment and Chemical Engineering, Yellow River Conservancy Technical Institute, Kaifeng Key Laboratory of Green Coating Materials)
  • Received : 2018.03.20
  • Accepted : 2018.07.18
  • Published : 2018.11.30

Abstract

Internally plasticized PVC was prepared via chemical reaction of azide PVC and alkynyl group containing castor oil methyl ester. The chemical structure of alkynyl group containing castor oil methyl ester and internally plasticized PVC was characterized with FT-IR and $^1H$ NMR. Properties of internally plasticized PVC, including thermal stability, tensile tests and resistance to extraction in different solvents, was investigated. The results showed that alkynyl group containing castor oil methyl ester, as internal plasticizer of PVC, not only decreased the $T_g$ of PVC from $84.6^{\circ}C$ to $41.6^{\circ}C$ efficiently, but also presented no plasticizer loss in five different solvents. The tensile tests showed that elongation at break and tensile strength of internally plasticized PVC was 353.8% and 18.1 MPa. The internally plasticized PVC has potential application in replacing the traditional PVC material in PVC products with high durability.

Keywords

References

  1. Y. Zhou, N. Yang and S. Hu, Resour. Conserv. Recycl., 73, 33 (2013). https://doi.org/10.1016/j.resconrec.2012.12.016
  2. Z. Qiu and P. Zhou, RSC Adv., 4, 51411 (2014). https://doi.org/10.1039/C4RA08827A
  3. P. Jia, M. Zhang, L. Hu, J. Zhou, G. Feng and Y. Zhou, Polym. Degrad. Stab., 121, 292 (2015). https://doi.org/10.1016/j.polymdegradstab.2015.09.020
  4. M. G. A. Vieira, M. A. da Silva, L. O. dos Santos and M. M. Beppu, Eur. Polym. J., 47, 254 (2011). https://doi.org/10.1016/j.eurpolymj.2010.12.011
  5. M. Rahman and C. S. Brazel, Prog. Polym. Sci., 29, 1223 (2004). https://doi.org/10.1016/j.progpolymsci.2004.10.001
  6. P. Jia, M. Zhang, L. Hu and Y. Zhou, Korean J. Chem. Eng., 33, 1080 (2016). https://doi.org/10.1007/s11814-015-0213-9
  7. S. Benjamin, E. Masai, N. Kamimura, K. Takahashi, R. C. Anderson and P. A. Faisal, J. Hazard. Mater., 340, 360 (2017). https://doi.org/10.1016/j.jhazmat.2017.06.036
  8. A. L. Perez, M. Liong, K. Plotkin, K. P. Rickabaugh and D. J. Paustenbach, Chemosphere, 167, 541 (2017). https://doi.org/10.1016/j.chemosphere.2016.10.007
  9. J. H. Li and Y. C. Ko, Kaohsiung J. Med. Sci., 28, S17 (2012). https://doi.org/10.1016/j.kjms.2012.05.005
  10. K. M. Gani, V. K. Tyagi and A. A. Kazmi, Environ. Sci. Pollut. R., 24, 17267 (2017). https://doi.org/10.1007/s11356-017-9182-3
  11. P. Jia, M. Zhang, L. Hu, G. Feng, C. Bo and Y. Zhou, ACS. Sustain. Chem. Eng., 3, 2187 (2015). https://doi.org/10.1021/acssuschemeng.5b00449
  12. J. Chen, X. Li, Y. Wang, K. Li, J. Huang, J. Jiang and X. Nie, J. Taiwan Inst. Chem. E., 65, 488 (2016). https://doi.org/10.1016/j.jtice.2016.05.025
  13. P. Jia, M. Zhang, C. Liu, L. Hu, G. Feng, C. Bo and Y. Zhou, RSC Adv., 5, 41169 (2015). https://doi.org/10.1039/C5RA05784A
  14. B. W. Chieng, N. A. Ibrahim, Y. Y. Then and Y. Y. Loo, Polymers, 9, 204 (2017). https://doi.org/10.3390/polym9060204
  15. M. P Arrieta, M. D. Samper, M. Jimenez-Lopez, M. Aldas and J. Lopez, Ind. Crop. Prod., 99, 196 (2017). https://doi.org/10.1016/j.indcrop.2017.02.009
  16. D. T. C. Ang, Y. K. Khong and S. N. Gan, J. Vinyl. Addit. Techn., 22, 80 (2016). https://doi.org/10.1002/vnl.21434
  17. S. Lee, M. S. Park, J. Shin and Y. W. Kim, Polym. Degrad. Stab., 147, 1 (2018). https://doi.org/10.1016/j.polymdegradstab.2017.11.002
  18. P. Jia, L. Hu, X. Yang, M. Zhang, Q. Shang and Y. Zhou, RSC Adv., 7, 30101 (2017). https://doi.org/10.1039/C7RA04386D
  19. P. Jia, M. Zhang, L. Hu, F. Song, G. Feng and Y. Zhou, SCI REPUK, 8, 1589 (2018). https://doi.org/10.1038/s41598-018-19958-y
  20. P. Jia, M. Zhang, L. Hu, R. Wang, C. Sun and Y. Zhou, Polymers, 9, 621 (2017). https://doi.org/10.3390/polym9110621
  21. P. Jia, L. Hu, M. Zhang, G. Feng and Y. Zhou, Eur. Polym. J., 87, 209 (2017). https://doi.org/10.1016/j.eurpolymj.2016.12.023
  22. R. Navarro, M. P. Perrino, C. Garcia, C. Elvira, A. Gallardo and H. Reinecke, Macromolecules, 49, 2224 (2016). https://doi.org/10.1021/acs.macromol.6b00214
  23. K. W. Lee, J. W. Chung and S. Y. Kwak, Macromol. Rapid Commun., 37, 2045 (2016). https://doi.org/10.1002/marc.201600533
  24. J. Choi and S. Y. Kwak, Environ. Sci. Technol., 41, 3763 (2007). https://doi.org/10.1021/es062715t
  25. B. Y. Yu, J. W. Chung and S. Y. Kwak, Environ. Sci. Technol., 42, 7522 (2008). https://doi.org/10.1021/es800895x
  26. W. Choi, J. W. Chung and S. Y. Kwak, ACS Appl. Mater. Interfaces, 6, 11118 (2014). https://doi.org/10.1021/am500740v
  27. C. Liu, J. Li, W. Lei and Y. Zhou, Ind. Crop. Prod., 52, 329 (2014). https://doi.org/10.1016/j.indcrop.2013.11.010
  28. L. Zhang, M. Zhang, Y. Zhou and L. Hu, Polym. Degrad. Stab., 98, 2784 (2013). https://doi.org/10.1016/j.polymdegradstab.2013.10.015
  29. P. Jia, L. Hu, M. Zhang and Y. Zhou, J. Therm. Anal. Calorim., 124, 1331 (2016). https://doi.org/10.1007/s10973-015-5199-3
  30. P. Jia, R. Wang, L. Hu, M, Zhang and Y, Zhou, Pol. J. Chem. Technol., 19, 16 (2017).
  31. J. Lafarge, N. Kebir, D. Schapman, V. Gadenne and F. Burel, Cellulose, 20, 2779 (2013). https://doi.org/10.1007/s10570-013-0060-y
  32. B. Kiskan, G. Demiray and Y. Yagci, J. Polym. Sci. Pol. Chem., 46, 3512 (2008). https://doi.org/10.1002/pola.22685
  33. H. Qu, X. Liu, J. Xu, H. Ma, Y. Jiao and J. Xie, Ind. Eng. Chem. Res., 53, 8476 (2014). https://doi.org/10.1021/ie404297r
  34. S. V. Levchik and E. D. Weil, Polym. Adv. Technol., 15, 691 (2004). https://doi.org/10.1002/pat.526
  35. A. I. Balabanovich, T. A. Zevaco and W. Schnabel, Macromol. Mater. Eng., 289, 181 (2004). https://doi.org/10.1002/mame.200300153
  36. A. I. Balabanovich, Thermochim. Acta, 435, 188 (2005). https://doi.org/10.1016/j.tca.2005.05.019

Cited by

  1. Recent Developments of Biobased Plasticizers and Their Effect on Mechanical and Thermal Properties of Poly(vinyl chloride): A Review vol.58, pp.27, 2018, https://doi.org/10.1021/acs.iecr.9b02080
  2. Internal plasticization of poly(vinyl) chloride using glutamic acid as a branched linker to incorporate four plasticizers per anchor point vol.57, pp.17, 2019, https://doi.org/10.1002/pola.29455
  3. Preparation and Performance of Bio-Based Polyol Ester from One-Pot Synthesis of Castor Oil as Nontoxic Poly(Vinyl Chloride) Plasticizer vol.28, pp.8, 2018, https://doi.org/10.1007/s10924-020-01754-3
  4. Research progress of novel bio-based plasticizers and their applications in poly(vinyl chloride) vol.56, pp.17, 2018, https://doi.org/10.1007/s10853-021-05934-x