• Title/Summary/Keyword: high power amplifier

Search Result 910, Processing Time 0.02 seconds

A Study on Improving Efficiency of Power Amplifier using Doherty Theory for Wireless Network and Repeater (도허티 이론을 이용한 무선 네트워크 및 중계기용 전력증폭기의 효율 향상에 관한 연구)

  • Jeon Joong Sung;Choi Dong Muk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.2
    • /
    • pp.422-427
    • /
    • 2005
  • In this paper, Doherty amplifier is designed by the need of improving the linearity and efficiency of wireless network and repeater for WCDMA. It is designed to maintain the high linearity and efficiency at the low efficiency period of the power amplifier after analyzing Doherty technique using the active load-pull in condition of the high efficiency power amplifier implementation according to the variation of input power. CW 1-tone experimental results at the WCDMA frequency 2.11$\~$2.17 CHz shows that Doherty amplifier, which achieves pore. add efficiency(PAE) 50$\%$ at 6dB back off the point from maximum output power 52.3dBm, obtains higher efficiency of 13.3$\%$ than class AB. finding optimum bias point after adjusted gate voltage, Doherty amplifier shows that IMD3 improves 4dB.

Research on PAE of Doherty Amplifier with Low-pass Filter of Wide Stopband (광대역 특성의 LPF를 이용한 도허티 증폭기의 전력 효율 향상에 관한 연구)

  • Jung, Du-Won;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.1
    • /
    • pp.107-111
    • /
    • 2009
  • In this paper, the power added efficiency(PAE) of a Doherty amplifier has been improved by applying Photonic Bandgap(PBG) characteristics on the output of amplifier. As a result of the high order harmonics termination, excellent improvement in PAE, maximum output power as well as linearity is obtained. The PAE is improved as much as relatively 35% compared with a conventional Doherty amplifier. Moreover, size of LPF is reduced by PBG characteristics. Therefore the whole amplifier circuit size is considerably reduced by diminishing in size of the LPF as compared with a Doherty amplifier using conventional LPFs.

A 6-16 GHz GaN Distributed Power Amplifier MMIC Using Self-bias

  • Park, Hongjong;Lee, Wonho;Jung, Joonho;Choi, Kwangseok;Kim, Jaeduk;Lee, Wangyong;Lee, Changhoon;Kwon, Youngwoo
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.2
    • /
    • pp.105-107
    • /
    • 2017
  • The self-biasing circuit through a feedback resistor is applied to a gallium nitride (GaN) distributed power amplifier (PA) monolithic microwave circuit (MMIC). The self-biasing circuit is a useful scheme for biasing depletion-mode compound semiconductor devices with a negative gate bias voltage, and is widely used for common source amplifiers. However, the self-biasing circuit is rarely used for PAs, because the large DC power dissipation of the feedback resistor results in the degradation of output power and power efficiency. In this study, the feasibility of applying a self-biasing circuit through a feedback resistor to a GaN PA MMIC is examined by using the high operation voltage of GaN high-electron mobility transistors. The measured results of the proposed GaN PA are the average output power of 41.1 dBm and the average power added efficiency of 12.2% over the 6-16 GHz band.

PHEMT MMIC Broad-Band Power Amplifier for LMDS (Ka 대역 광대역 MMIC 전력증폭기)

  • 백경식;김영기;맹성재;이진희;박철순
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.177-180
    • /
    • 1999
  • A two-stage monolithic microwave integrated circuits (MMIC) broad-band power amplifier with AlGaAs/InGaAs/GaAs pseudomorphic high electron mobility transistor (PHEMT) has been developed for the up-link and down-link applications for local multipoint distribution systems (LMDS) in the frequency range of 24~28㎓. The amplifier has a small signal gain of 18.6㏈ at 24.5㎓ and 16.7㏈ at 27.1㎓. It achieved output powers of 19.8㏈m with PAE of 19.8% at 24.5㎓ and 18.8㏈m at 27.1㎓.

  • PDF

Design and Implementation of Class-AB High Power Amplifier for IMT-2000 System using Optimized Defected Ground Structure (최적화된 DGS 회로를 이용한 IMT-2000용 Class-AB 대전력증폭기의 설계 및 구현)

  • 강병권;차용성;김선형;박준석
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.1
    • /
    • pp.41-48
    • /
    • 2003
  • In this paper, a new equivalent circuit for a defected ground structure(DGS) is proposed and adapted to design of a power amplifier for performance improvement. The DGS equivalent circuit presented in this paper consists of parallel LC resonator and parallel capacitance to describe the fringing fields due to the etched defects on the metallic ground plane, and also is used to optimize the matching circuit of a power amplifier. A previous research has also used a DGS for harmonic rejection and efficiency improvement of a power amplifier(1), however, there was no exact equivalent circuit analysis. In this paper, we suggest a novel design method and show the performance improvement of a class AB power amplifier by using the equivalent circuit of a DGS applied to output matching circuit. The design method presented in this paper can provide very accurate design results to satisfy the optimum load condition and the desirable harmonic rejection, simultaneously. As a design example, we have designed a 20W power amplifier with and without circuit simulation of DGS, and compared the measurement results.

  • PDF

Technical Trends in Next-Generation GaN RF Power Devices and Integrated Circuits (차세대 GaN RF 전력증폭 소자 및 집적회로 기술 동향)

  • Lee, S.H.;Lim, J.W.;Kang, D.M.;Baek, Y.S.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.5
    • /
    • pp.71-80
    • /
    • 2019
  • Gallium nitride (GaN) can be used in high-voltage, high-power-density/-power, and high-speed devices owing to its characteristics of wide bandgap, high carrier concentration, and high electron mobility/saturation velocity. In this study, we investigate the technology trends for X-/Ku-band GaN RF power devices and MMIC power amplifiers, focusing on gate-length scaling, channel structure, and power density for GaN RF power devices and output power level and output power density for GaN MMIC power amplifiers. Additionally, we review the technology trends in gallium arsenide (GaAs) RF power devices and MMIC power amplifiers and analyze the technology trends in RF power devices and MMIC power amplifiers based on both GaAs and GaN. Furthermore, we discuss the current direction of national research by examining the national and international technology trends with respect to X-/Ku-band power devices and MMIC power amplifiers.

W-CDMA 30 Watts High Power Amplifier Using Anti-Phase Intermodulation Distortion Linearization Technology (Anti-Phase IMD 선형화 기술을 이용한 W-CDMA 30 W 대전력 증폭기)

  • Kang, Won-Tae;Do, Ji-Hoon;Chang, Jeong-Seok;Hong, Ui-Seok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.7
    • /
    • pp.723-730
    • /
    • 2007
  • This paper shows how the ACLR of power amplifier can be reduced by using Anti-phase IMD linearization technique which generate anti-phase IMD in the driver stage compare to output stage's IMD. And design process proposed. From the experimental result of W-CDMA 4FA input signal, this amplifier has ACLR -55 dBc@5 MHz offset at 30 watts average power. Compare to optimum matching technique to get maximum power gain, this technique has been improved ACLR by 12 dBc. Also this amplifier meets 50 watts average output power amplifier specification in domestic market.

Design of 24-GHz Power Amplifier for Automotive Collision Avoidance Radars (차량 추돌 방지 레이더용 24-GHz 전력 증폭기 설계)

  • Noh, Seok-Ho;Ryu, Jee-Youl
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.1
    • /
    • pp.117-122
    • /
    • 2016
  • In this paper, we propose 24-GHz CMOS radio frequency (RF) power amplifier for short-range automotive collision avoidance radars. This circuit contains common source stage with inter-stages conjugate matching circuit as a class-A mode amplifier. The proposed circuit is designed using TSMC $0.13-{\mu}m$ mixed signal/RF CMOS process ($f_T/f_{MAX}=120/140GHz$). It operates at the supply voltage of 2V, and it is designed to have high power gain, low insertion loss and low noise figure in the low supply voltage. To reduce total chip area, the circuit used transmission lines instead of the bulky real inductor. The designed CMOS power amplifier showed the smallest chip size of $0.1mm^2$, the lowest power consumption of 40mW, the highest power gain of 26.5dB, the highest saturated output power of 19.2dBm and the highest maximum power-added efficiency of 17.2% as compared to recently reported results.

Design of Dual-band Power Amplifier using CRLH of Metamaterials (메타구조의 CRLH를 이용한 이중대역 전력증폭기 설계)

  • Ko, Seung-Ki;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.12
    • /
    • pp.78-83
    • /
    • 2010
  • In this paper, a novel dual-band power amplifier using metamaterials has been realized with one RF GaN HEMT diffusion metal-oxide-semiconductor field effect transistor. The CRLH TL can lead to metamaterial transmission line with the dual-band tuning capability. The dual-band operation of the CRLH TL is achieved by the frequency offset and the nonlinear phase slope of the CRLH TL for the matching network of the power amplifier. We have managed only the second- and third-harmonics to obtain the high efficiency with the CRLH TL in dual-band. Also, the proposed power amplifier has been realized by using the harmonic control circuit for not only the output matching network, but also the input matching network for better efficiency. Two operating frequencies are chosen at 900 MHz and 2140 MHz in this work. The measured results show that the output power of 39.83 dBm and 35.17 dBm was obtained at 900 MHz and 2140 MHz, respectively. At this point, we have obtained the power-added efficiency (PAE) and IMD of 60.2 %, -23.17dBc and 67.3 %, -25.67dBc at two operation frequencies, respectively.

Design and Fabrication of 25 W Ka-Band SSPA Based on GaN HPA MMICs (GaN HPA MMIC 기반 Ka 대역 25 W SSPA 설계 및 제작)

  • Ji, Hong-gu;Noh, Youn-sub;Choi, Youn-ho;Kwak, Chang-soo;Youm, In-bok;Seo, In-jong;Park, Hyung-jin;Jo, In-ho;Nam, Byung-chang;Kong, Dong-uk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.12
    • /
    • pp.1083-1090
    • /
    • 2015
  • We designed and manufactured Ka-band SSPA include drive amplifier and high power amplifier MMICs by $0.15{\mu}m$ GaN commercial process. Also, we fabricated main components micro-strip line to WR28 waveguide transition and WR28 wave guide power combiner for Ka-band SSPA. This Ka-band SSPA shows saturated output power 44.2 dBm, power added efficiency 16.6 % and power gain 39.2 dB at 29~31 GHz frequency band.