• Title/Summary/Keyword: high critical current density

Search Result 263, Processing Time 0.025 seconds

Reel-to-reel electropolishing of Ni alloy tapes for IBAD template (IBAD template용 니켈 합금의 연속 전해연마)

  • Ha H. S;Kim H. K;Ko R. K;Kim H. S;Song K. J;Park C;Yoo S. I;Joo J. H;Moon S. H
    • Progress in Superconductivity
    • /
    • v.6 no.1
    • /
    • pp.69-73
    • /
    • 2004
  • Ni alloy tape is electropolished to be used as a metal substrate for fabrication of IBAD (ion-Beam Assisted Deposition)-MgO texture template fur HTS coated conductor. Electropolishing is needed to obtain a very smooth surface of Ni alloy tape because the in-plane texture of templates is sensitive to the roughness of metal substrate. The critical current of YBCO coated conductor depends on the texture of YBCO that depends on the texture of the IBAD MgO layer. And so the smoothness of the metal substrate is directly related to the superconducting properties of the coated conductor. In this study, we have prepared a reel-to-reel electropolishing apparatus to polish the Ni alloy tapes for IBAD. Various electropolishing conditions were investigated to improve the surface roughness. Hastelloy tape is continuously electropolished with high polishing current density (0.5 ∼ 2 A/$\textrm{cm}^2$) and fast processing time (1 ∼ 3 min). Polished hastelloy tapes have surface roughness(RMS) of below 1 nm on a 5 ${\times}$ 5 $\mu\m^2$ from AFM and SEM.

  • PDF

Effect of heating rate on calcination heat treatment of YBCO thin films by DCA-MOD method (DCA-MOD 법으로 YBCO 박막 제조시 하소열처리의 승온속도 효과)

  • Kim, Byeong-Joo;Kim, Hye-Jin;Cho, Han-Woo;Kwon, Youn-Kyung;Ryu, Jung-Hee;Lee, Hee-Gyoun;Hong, Gye-Won
    • Progress in Superconductivity
    • /
    • v.8 no.2
    • /
    • pp.186-192
    • /
    • 2007
  • High $J_c\;YBa_2Cu_3O_{7-x}$ superconducting films have been fabricated $LaAlO_3(100)$ substrate by MOD method using dichloroacetic acid(DCA) as chelating solvent for preparing precursor solution. Heating rate was varied in order to optimize the calcination heat treatment condition in DCA-MOD method. Coated films were calcined at lower temperature up to $500^{\circ}C$ in flowing humid oxygen atmosphere. The heating rate was calcined from $13.3^{\circ}C/min\;to\;0.28^{\circ}C/min$. Conversion heat treatment was performed $800^{\circ}C$ for 2 h in flowing Ar gas containing 1000 ppm oxygen with a humidity of 9.45%. Surface and cross sectional SEM microstructures showed that particle sizes were increased with heating rate at a calcination step. The amount of pores was increased with heating rate in the calcined films. Dense microstructure and sharp texture were developed in an YBCO films after conversion heat treatment. A high critical current density (Jc) of $1.26MA/cm^2$ (@77 K and self-field) was obtained for the YBCO film which was prepared with a heating rate of $0.28^{\circ}C/min$.

  • PDF

Development of Biomass-Derived Anode Material for Lithium-Ion Battery (리튬이온 전지용 바이오매스 기반 음극재 개발)

  • Jeong, Jae Yoon;Lee, Dong Jun;Heo, Jungwon;Lim, Du-Hyun;Seo, Yang-Gon;Ahn, Jou-Hyeon;Choi, Chang-Ho
    • Clean Technology
    • /
    • v.26 no.2
    • /
    • pp.131-136
    • /
    • 2020
  • Biomass bamboo charcoal is utilized as anode for lithium-ion battery in an effort to find an alternative to conventional resources such as cokes and petroleum pitches. The amorphous phase of the bamboo charcoal is partially converted to graphite through a low temperature graphitization process with iron oxide nanoparticle catalyst impregnated into the bamboo charcoal. An optimum catalysis amount for the graphitization is determined based on the characterization results of TEM, Raman spectroscopy, and XRD. It is found that the graphitization occurs surrounding the surface of the catalysis, and large pores are formed after the removal of the catalysis. The formation of the large pores increases the pore volume and, as a result, reduces the surface area of the graphitized bamboo charcoal. The partial graphitization of the pristine bamboo charcoal improves the discharge capacity and coulombic efficiency compared to the pristine counterpart. However, the discharge capacity of the graphitized charcoal at elevated current density is decreased due to the reduced surface area. These results indicate that the size of the catalysis formed in in-situ graphitization is a critical parameter to determine the battery performance and thus should be tuned as small as one of the pristine charcoal to retain the surface area and eventually improve the discharge capacity at high current density.

A Techno-Economic Study of Commercial Electrochemical CO2 Reduction into Diesel Fuel and Formic Acid

  • Mustafa, Azeem;Lougou, Bachirou Guene;Shuai, Yong;Razzaq, Samia;Wang, Zhijiang;Shagdar, Enkhbayar;Zhao, Jiupeng
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.148-158
    • /
    • 2022
  • The electrochemical CO2 reduction (ECR) to produce value-added fuels and chemicals using clean energy sources (like solar and wind) is a promising technology to neutralize the carbon cycle and reproduce the fuels. Presently, the ECR has been the most attractive route to produce carbon-building blocks that have growing global production and high market demand. The electrochemical CO2 reduction could be extensively implemented if it produces valuable products at those costs which are financially competitive with the present market prices. Herein, the electrochemical conversion of CO2 obtained from flue gases of a power plant to produce diesel and formic acid using a consistent techno-economic approach is presented. The first scenario analyzed the production of diesel fuel which was formed through Fischer-Tropsch processing of CO (obtained through electroreduction of CO2) and hydrogen, while in the second scenario, direct electrochemical CO2 reduction to formic acid was considered. As per the base case assumptions extracted from the previous outstanding research studies, both processes weren't competitive with the existing fuel prices, indicating that high electrochemical (EC) cell capital cost was the main limiting component. The diesel fuel production was predicted as the best route for the cost-effective production of fuels under conceivable optimistic case assumptions, and the formic acid was found to be costly in terms of stored energy contents and has a facile production mechanism at those costs which are financially competitive with its bulk market price. In both processes, the liquid product cost was greatly affected by the parameters affecting the EC cell capital expenses, such as cost concerning the electrode area, faradaic efficiency, and current density.

Comparison of Reciprocal and Concentric Winding Arrangement of HTS Transformer (고온초전도 변압기의 교호 배치 권선과 동심형 배치 권선의 비교)

  • Kim, Sung-Hoon;Kim, Woo-Seok;Lee, Sang-Jin;Park, Kyeong-Dal;Joo, Hyeong-Gil;Hong, Gye-Won;Han, Jin-Ho;Hahn, Song-yop;Park, Chan-Bae
    • Progress in Superconductivity
    • /
    • v.5 no.1
    • /
    • pp.61-64
    • /
    • 2003
  • In HTS transformer with double pancake windings, the perpendicular component of leakage magnetic flux density ($B_{r}$ ) applied to HTS tapes of double pancake windings of HTS transformer acts as a cause to decrease the critical current in HTS tape. So, in this paper, HTS transformer with reciprocal arrangement winding is designed. And in order to investigate the$ B_{r}$ applied to HTS windings, the 2-D non-linear electromagnetic analysis of HTS transformer is performed by using the OPERA 2D. The maximum $B_{r}$ applied to winding of HTS transformer is 0.112 T and the characteristics of HTS transformer were also obtained. But in this type of winding arrangement, reciprocal arrangement, the generated ac-loss to the HTS windings is very high because of the applied $B_{r}$ to HTS windings. Therefore, in order to reduce the generated ac-loss to the HTS windings, the new design of HTS transformer with concentric winding arrangement is presented in this paper and the 2-D non-linear electromagnetic analysis and the ac-loss for HTS transformer with the concentric winding arrangement is also carried out.

  • PDF

Thermal managing effects by cooling channels on performance of a PEMFC (냉각채널 열관리에 따른 고분자연료전지의 성능영향 연구)

  • Sohn, Young-Jun;Kim, Min-Jin;Park, Gu-Gon;Kim, Kyoung-Youn;Lee, Won-Yong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.373-373
    • /
    • 2009
  • Relative humidity, membrane conductivity and water activity are critical parameters of polymer electrolyte membrane fuel cells (PEMFC) for high performance and reliability. These parameters are closely related with temperature. Moreover, the ideal values of these parameters are not always identical along the channels. Therefore, the cooling channel design and its operating condition should be well optimized along the all location of the channels. In the present study, we have performed a numerical investigation on the effects of cooling channels on performance of a PEMFC. Three-dimensional Navier-Stokes equations are solved with the energy equation including heat generated by the electrochemical reactions in the fuel cell. The present numerical model includes the gas diffusion layers (GDL) and serpentine channels for both anode and cathode gas flows, as well as cooling channels. To accurately predict the water transport across the membrane, the distribution of water content in the membrane is calculated by solving a nonlinear differential equation with a nonlinear coefficient, i.e., the water diffusivity which is a function of water content as well as temperature. Main emphasis is placed on the heat transfer between the solid bipolar plate and coolant flow. The present results show that local current density is affected by cooling channels due to the change of the oxygen concentration and the membrane conductivity as well as the water content. It is also found that the relative humidity is influenced by the generated water and the gas temperature and thus it affects the distribution of fuel concentration and the conductivity of the membrane, ultimately fuel cell performance. Unit-cell experiments are also carried out to validate the numerical models. The performance curves between the models and experiments show reasonable results.

  • PDF

Hip Protector Design Process for the Korean Elderly

  • Jeon, Eun-Jin;Kim, Hee-Eun
    • Fashion & Textile Research Journal
    • /
    • v.18 no.4
    • /
    • pp.520-530
    • /
    • 2016
  • This research aims to propose an ergonomic design process for hip protector based on previous studies, existing products, multidisciplinary experts opinion, and wearing test. The elderly are more likely to suffer a hip fracture when they fall due to their physical changes in skeletal form, muscle quantity, bone density, and joint movement. A hip protector is an effective product to prevent hip fractures in the elderly but it also has a problem in that it is uncomfortable. Therefore there is a high chance that it won't be able to prevent hip fractures properly. Since the comfort of a hip protector is one of the most critical elements in preventing a hip fracture, we need to keep improving the hip protector for mobility and usability. Based on the previous studies and limitations of current hip protector products, we need to come up with an optimal design for the Korean elderly. First, knowledge has to be built relating to the ergonomic design of the hip protector considering body shape and size analysis using 3D-scan data, and biomechanical analysis on hip fracture. Second, we need to develop a design process including hip protector pattern design, and wearing evaluation with virtual system. Third, we suggest to reevaluate and verify the design procedure from impact evaluation using testing simulator, virtual evaluation of impact, to wearing comfort and usability evaluation. This design process presented in this study would be expected to contribute to the development of ergonomic hip protector which is suitable for the Korean elderly.

Synthesis of Highly Dispersible Metal Nanoparticles in P3HT:PCBM Layers and Their Effects on the Performance of Polymer Solar Cells (P3HT:PCBM 층 내 분산 가능한 금속 나노입자의 제조 및 이를 포함한 고분자 태양전지 소자의 특성에 관한 연구)

  • Kim, Min-Ji;Choi, Gyu-Chae;Kim, Young-Kuk;Kim, Yang-Do;Baek, Youn-Kyoung
    • Journal of Powder Materials
    • /
    • v.21 no.3
    • /
    • pp.179-184
    • /
    • 2014
  • In this study, we prepare polymer solar cells incorporating organic ligand-modified Ag nanoparticles (O-AgNPs) highly dispersed in the P3HT:PCBM layer. Ag nanoparticles decorated with water-dispersible ligands (WAgNPs) were also utilized as a control sample. The existence of the ligands on the Ag surface was confirmed by FT-IR spectra. Metal nanoparticles with different surface chemistries exhibited different dispersion tendencies. O-AgNPs were highly dispersed even at high concentrations, whereas W-AgNPs exhibited significant aggregation in the polymer layer. Both dispersion and blending concentration of the Ag nanoparticles in P3HT:PCBM matrix had critical effects on the device performance as well as light absorption. The significant changes in short-circuit current density ($J_{SC}$) of the solar cells seemed to be related to the change in the polymer morphology according to the concentration of AgNPs introduced. These findings suggested the importance of uniform dispersion of plasmonic metal nanoparticles and their blending concentration conditions in order to boost the solar cell performance.

Superconductivity recovery of vacuum annealed HTS GdBCO CC

  • You, Jong Su;Yang, Jeong Hun;Song, Kyu Jeong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.3
    • /
    • pp.41-46
    • /
    • 2022
  • The superconducting properties of high temperature superconducting (HTS) GdBCO coated conductor (CC) tape (Ag/GdBCO/Buffer-layers/Stainless Steel) were investigated, specifically a series of samples prepared by vacuum heat treatment (200℃ to 600℃), using a Quantum Design PPMS-14. The critical current density Jc value was obtained by applying the modified Bean model to the irreversible magnetization ∆Mirr(H) data which was estimated from the magnetization M(H) loop. The reduction rates of lnJc and Tc values according to the increase of the vacuum annealing temperature Tan were d(lnJc)/dTan = - 0.016 A/(cm2∙℃) and dTc/dTan = - 0.24, respectively. We examined the effect of recovery temperature Tre (475℃ to 700℃) and recovery duration time t (0.5 h to 24 h) on the restoration of previously completely lost superconductivity in samples that subsequently received heat treatment in an O2 gas flow space. All samples were fully restored to superconductivity by heat treatment in an O2 gas flow space. The recovery temperatures Tre (475℃ to 700℃) and recovery duration times t (0.5 h to 24 h) were both independent of the superconductivity recovery characteristics.

Stability investigation of symmetrically porous advanced composites plates via a novel hyperbolic RPT

  • S.R. Mahmoud;E.I. Ghandourah;A.H. Algarni;M.A. Balubaid;Abdelouahed Tounsi;Abdeldjebbar Tounsi;Fouad Bourada
    • Steel and Composite Structures
    • /
    • v.46 no.4
    • /
    • pp.471-483
    • /
    • 2023
  • This paper presents an analytical hyperbolic theory based on the refined shear deformation theory for mechanical stability analysis of the simply supported advanced composites plates (exponentially, sigmoidal and power-law graded) under triangular, trapezoidal and uniform uniaxial and biaxial loading. The developed model ensures the boundary condition of the zero transverse stresses at the top and bottom surfaces without using the correction factor as first order shear deformation theory. The mathematical formulation of displacement contains only four unknowns in which the transverse deflection is divided to shear and bending components. The current study includes the effect of the geometric imperfection of the material. The modeling of the micro-void presence in the structure is based on the both true and apparent density formulas in which the porosity will be dense in the mid-plane and zero in the upper and lower surfaces (free surface) according to a logarithmic function. The analytical solutions of the uniaxial and biaxial critical buckling load are determined by solving the differential equilibrium equations of the system with the help of the Navier's method. The correctness and the effectiveness of the proposed HyRPT is confirmed by comparing the results with those found in the open literature which shows the high performance of this model to predict the stability characteristics of the FG structures employed in various fields. Several parametric analyses are performed to extract the most influenced parameters on the mechanical stability of this type of advanced composites plates.