Acknowledgement
This research work was funded by Institutional Fund Projects under grant no. (IFPHI-079-156-2020). Therefore, authors gratefully acknowledge technical and financial support from the Ministry of Education and King Abdulaziz University, Jeddah, Saudi Arabia
References
- Abdulrazzaq, M.A., Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2020), "Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory", Steel Compos. Struct., 35(1), 147-157. https://doi.org/10.12989/SCS.2020.35.1.147.
- Akbas, S.D. (2018), "Forced vibration analysis of functionally graded porous deep beams", Compos. Struct., 186, 293-302. https://doi.org/10.1016/j.compstruct.2017.12.013.
- Akbas, S.D., Bashiri, A.H., Assie, A.E. and Eltaher, M.A. (2020), "Dynamic analysis of thick beams with functionally graded porous layers and viscoelastic support", J. Vib. Control, 27(13-14). https://doi.org/10.1177/1077546320947302.
- Akbas, S.D. (2019a). "Hygro-thermal post-buckling analysis of a functionally graded beam", Coupled Syst. Mech., 8(5), 459-471. https://doi.org/10.12989/csm.2019.8.5.459.
- Attia, M.A. (2017), "On the mechanics of functionally graded nanobeams with the account of surface elasticity", Int. J. Eng. Sci., 115,73-101. https://doi.org/10.1016/j.ijengsci.2017.03.011.
- Avcar, M. Alsaid Alwan, H.H. (2017), "Free Vibration of Functionally Graded Rayleigh Beam", Int. J. Eng. Appl. Sci., 9(2), 127- 137. https://doi.org/10.24107/ijeas.322884.
- Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/SCS.2019.30.6.603.
- Avcar, M. and Mohammed, W.K.M. (2018), "Free vibration of functionally graded beams resting on Winkler-Pasternak foundation", Arab. J. Geosci., 11(10). https://doi.org/10.1007/s12517-018-3579-2.
- Barati, M.R. (2017), "Vibration analysis of FG nanoplates with nanovoids on viscoelastic substrate under hygro-thermomechanical loading using nonlocal strain gradient theory", Struct. Eng. Mech., 64(6), 683-693. https://doi.org/10.12989/SEM.2017.64.6.683.
- Barati, M.R. and Shahverdi, H. (2017), "Aero-hygro-thermal stability analysis of higher-order refined supersonic FGM panels with even and uneven porosity distributions", J. Fluids Struct., 73, 125-136. https://doi.org/10.1016/j.jfluidstructs.2017.06.007.
- Bourada, F., Amara, K., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel refined plate theory for stability analysis of hybrid and symmetric S-FGM plates", Struct. Eng. Mech., 68(6), 661-675. http://dx.doi.org/10.12989/sem.2018.68.6.661.
- Bu, G., Ou, Z., Li, Z., Liu, F., Zheng, H., Zou, X. and Xie,Y. (2022), "Static and buckling characteristics of the porous ring reinforced by graphene nanofillers", Eng. Struct., 251, Part A, 113536, https://doi.org/10.1016/j.engstruct.2021.113536.
- Cuong-Le, T., Nguyen, K.D., Hoang-Le, M., Sang-To, T., Phan-Vu, P. and Abdel Wahab, M. (2022a), "Nonlocal strain gradient IGA numerical solution for static bending, free vibration and buckling of sigmoid FG sandwich nanoplate", Physica B: Condensed Matter., 631, 413726. https://doi.org/10.1016/j.physb.2022.413726.
- Cuong-Le, T., Nguyen, K.D., Lee, J. Rabczuk, T. and Nguyen-Xuan, H. (2022b), "A 3D nano scale IGA for free vibration and buckling analyses of multi-directional FGM nanoshells", Nanotechnology, 33(6), 065703. https://doi.org/10.1088/1361-6528/ac32f9.
- Cuong-Le, T., Nguyen, T.N., Vu, T.H., Khatir, S. and Abdel Wahab, M. (2020b), "A geometrically nonlinear size-dependent hypothesis for porous functionally graded micro-plate", Eng. Comput., 38(2022), 449-460. https://doi.org/10.1007/s00366-020-01154-0.
- Ebrahimi, F. and Barati, M.R. (2017a), "Scale-dependent effects on wave propagation in magnetically affected single/double-layered compositionally graded nanosize beams", Wave. Random Complex Med., 28(2), 326-342. https://doi.org/10.1080/17455030.2017.1346331.
- Ebrahimi, F. and Barati, M.R. (2017b), "Buckling analysis of nonlocal strain gradient axially functionally graded nanobeams resting on variable elastic medium", Proceedings Institution Mech. Eng., Part C: J. Mech. Eng. Sci., 232(11), 2067-2078. https://doi.org/10.1177/0954406217713518.
- Ebrahimi, F. and Barati, M.R. (2018), "Hygro-thermal vibration analysis of bilayer graphene sheet system via nonlocal strain gradient plate theory", J. Brazil. Soc. Mech. Sci. Eng., 40(9). https://doi.org/10.1007/s40430-018-1350-y.
- Ebrahimi, F., Barati, M.R. and Civalek, O. (2019), "Application of Chebyshev-Ritz method for static stability and vibration analysis of nonlocal microstructure-dependent nanostructures", Eng. Comput., 36, 953-964 https://doi.org/10.1007/s00366-019-00742-z.
- Ebrahimi, F., Jafari, A. and Barati, M.R. (2017), "Vibration analysis of magneto-electro-elastic heterogeneous porous material plates resting on elastic foundations", Thin-Wall. Struct., 119, 33-46. https://doi.org/10.1016/j.tws.2017.04.002.
- Ebrahimi, F.and Barati, M.R. (2016), "Wave propagation analysis of quasi-3D FG nanobeams in thermal environment based on nonlocal strain gradient theory". Appl. Phys., 122, 843. https://doi.org/10.1007/s00339-016-0368-1.
- Faleh, N. M., Ahmed, R. A. and Fenjan, R. M. (2018), "On vibrations of porous FG nanoshells", Int. J. Eng. Sci., 133, 1-14. https://doi.org/10.1016/j.ijengsci.2018.08.007.
- Fuyun, C., Jianzhang, H., Lihua, W., Zheng, Z. (2016), "Buckling analysis of functionally graded thin plate with in-plane material inhomogeneity", Eng. Anal. Bound. Elem., 65, 112-125. https://doi.org/10.1016/j.enganabound.2016.01.007.
- Hamed, M.A., Eltaher, M.A., Sadoun, A.M. and Almitani, K.H. (2016), "Free vibration of symmetric and sigmoid functionally graded nanobeams", Appl. Physics, 122(9), 829. https://doi.org/10.1007/s00339-016-0324-0.
- Jana, P. and Bhaskar, K. (2006), "Stability analysis of simply-supported rectangular plates under non-uniform uniaxial compression using rigorous and approximate plane stress solutions", Thin-Wall. Struct., 44(5), 507-516. https://doi.org/10.1016/j.tws.2006.04.009.
- Kang, J.H. and Leissa, A.W. (2005), "Exact solutions for the buckling of rectangular plates having linearly varying in-plane loading on two opposite simply supported edges", Int. J. Solids Struct., 42(14), 4220-4238. https://doi.org/10.1016/j.ijsolstr.2004.12.011.
- Kar, V.R. and Panda, S.K. (2015a), "Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel", Steel Compos. Struct., 18(3), 693-709. https://doi.org/10.12989/SCS.2015.18.3.693.
- Kar, V.R. and Panda, S.K. (2016a), "Geometrical nonlinear free vibration analysis of FGM spherical panel under nonlinear thermal loading with TD and TID properties", J. Therm. Stresses, 39(8), 942-959. https://doi.org/10.1080/01495739.2016.1188623.
- Kar, V.R. and Panda, S.K. (2016b), "Postbuckling analysis of shear deformable FG shallow spherical shell panel under nonuniform thermal environment", J. Therm. Stresses, 40(1), 25-39. https://doi.org/10.1080/01495739.2016.1207118.
- Kar, V.R. and Panda, S.K. (2015b), "Large deformation bending analysis of functionally graded spherical shell using FEM", Struct. Eng. Mech., 53(4), 661-679. https://doi.org/10.12989/SEM.2015.53.4.661.
- Karami, B., Shahsavari, D., Nazemosadat, S.M.R., Li, L. and Ebrahimi, A. (2018), "Thermal buckling of smart porous functionally graded nanobeam rested on Kerr foundation", Steel Compos. Struct., 29(3), 349-362. https://doi.org/10.12989/SCS.2018.29.3.349.
- Koizumi, M. (1993), "The concept of FGM", Ceram. Trans. 34,3-11.
- Kolahchi, R, Bidgoli, A.M.M. and Heydari, M.M. (2015), "Size-dependent bending analysis of FGM nano-sinusoidal plates resting on orthotropic elastic medium", Struct Eng. Mech., 55(5), 1001-1014. https://doi.org/10.12989/SEM.2015.55.5.1001.
- Kumar, R., Lal, A., Singh, B.N. and Singh, J. (2018), "New transverse shear deformation theory for bending analysis of fgm plate under patch load", Compos. Struct. https://doi.org/10.1016/j.compstruct.2018.10.014.
- Li, Z. (2020), "Exploration of the encased nanocomposites functionally graded porous arches: Nonlinear analysis and stability behavior", Appl. Math. Model., 82, 1-16. https://doi.org/10.1016/j.apm.2020.01.037.
- Li, Z., Chen, Y., Zheng, J. and Sun, Q. (2020a), "Thermal-elastic buckling of the arch-shaped structures with FGP aluminum reinforced by composite graphene platelets", Thin-Wall. Struct., 157, 107142. https://doi.org/10.1016/j.tws.2020.107142.
- Li, Z. and Zheng, J. (2019a), "Nonlinear stability of the encased functionally graded porous cylinders reinforced by graphene nanofillers subjected to pressure loading under thermal effect", Compos. Struct., 233, 111584. https://doi.org/10.1016/j.compstruct.2019.111584.
- Li, Z. and Zheng, J. (2019b), "Analytical consideration and numerical verification of the confined functionally graded porous ring with graphene platelet reinforcement", Int. J. Mech. Sci., 161-162, 105079. https://doi.org/10.1016/j.ijmecsci.2019.105079.
- Li, Z. and Zheng, J. (2020), "Structural failure performance of the encased functionally graded porous cylinder consolidated by graphene platelet under uniform radial loading", Thin-Wall. Struct., 146, 106454. https://doi.org/10.1016/j.tws.2019.106454.
- Li, Z., Zheng, J., Chen, Y., Sun, Q. and Zhang, Z. (2019b), "Effect of temperature variations on the stability mechanism of the confined functionally graded porous arch with nanocomposites reinforcement under mechanical loading", Compos. Part B: Eng., 176, 107330. https://doi.org/10.1016/j.compositesb.2019.107330.
- Li, Z., Zheng, J. and Zhang, Z.(2019a), "Mechanics of the confined functionally graded porous arch reinforced by graphene platelets", Eng. Struct., 201, 109817. https://doi.org/10.1016/j.engstruct.2019.109817.
- Li, Zh., Zheng, J. and Zhang, Z. (2020b), "Thermal nonlinear performance of the porous metal cylinders with composite graphene nanofiller reinforcement encased in elastic mediums", Int. J. Mech. Sci., 181, 105698-. https://doi.org/10.1016/j.ijmecsci.2020.105698.
- Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of fgm beams", Struct. Eng. Mech., 69(4), 427-437. https://doi.org/10.12989/sem.2019.69.4.427.
- Mahapatra, T. R., Kar, V. R., Panda, S. K. and Mehar, K. (2017), "Nonlinear thermoelastic deflection of temperature-dependent FGM curved shallow shell under nonlinear thermal loading", J. Therm. Stresses, 40(9), 1184-1199. https://doi.org/10.1080/01495739.2017.1302788
- Mijuskovic, O., Coric, B. and Scepanovic, B., (2015), "Accurate buckling Loads of Plates with different boundary Conditions under arbitrary edge compression", Int. J. Mech. Sci., 101, 309-323. https://doi.org/10.1016/j.ijmecsci.2015.07.017.
- Mirjavadi, S. S., Afshari, B. M., Barati, M. R. and Hamouda, A.M.S. (2018), "Transient response of porous FG nanoplates subjected to various pulse loads based on nonlocal stress-strain gradient theory", European J. Mech. - A/Solids. https://doi.org/10.1016/j.euromechsol.2018.11.004.
- Nguyen, T.-K. (2015). "A higher-order hyperbolic shear deformation plate model for analysis of functionally graded materials", Int. J. Mech. Materials Design., 11(2), 203-219. https://doi.org/10.1007/s10999-014-9260-3.
- Ramachandra, L.S. and Panda, S.K. (2012), "Dynamic instability of composite plates subjected to non-uniform in-plane loads", J. Sound Vib., 331(1), 53-65. https://doi.org/10.1016/j.jsv.2011.08.010.
- Ramteke, P.M., Patel, B. and Panda, S.K. (2020a), "Time-Dependent Deflection Responses of Porous FGM Structure Including Pattern and Porosity", Int. J. Appl. Mech., 12(09), https://doi.org/10.1142/S1758825120501021.
- Ramteke, P.M., Mehar, K., Sharma, N. and Panda, S. (2020b), "Numerical prediction of deflection and stress responses of functionally graded structure for grading patterns (Power-law, sigmoid and exponential) and variable porosity (Even/Uneven)", Scientia Iranica, 28(2), https://doi.org/10.24200/sci.2020.55581.4290.
- Sedighi, H.M., Keivani, M. and Abadyan, M. (2015), "Modified continuum model for stability analysis of asymmetric FGM double-sided NEMS: Corrections due to finite conductivity, surface energy and nonlocal effect", Compos. Part B: Eng., 83, 117-133. https://doi.org/10.1016/j.compositesb.2015.08.029.
- Selmi, A. (2020), "Exact solution for nonlinear vibration of clamped-clamped functionally graded buckled beam", Smart Struct. Syst., 26(3), 361-371. https://doi.org/10.12989/SSS.2020.26.3.361.
- Shahsavari, D., Shahsavari, M., Li, L. and Karami, B. (2018), "A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation", Aerospace Sci. Tech., 72, 134-149. https://doi.org/10.1016/j.ast.2017.11.004.
- Singh, S. J. and Harsha, S. P. (2019), "Buckling analysis of FGM plates under uniform, linear and non-linear in-plane loading", J. Mech. Sci. Tech., https://doi.org/10.1007/s12206-019-0328-8.
- Sofiyev, A. and Avcar, M. (2010), "The stability of cylindrical shells containing an FGM layer subjected to axial load on the pasternak foundation", Eng., 2(4), 228-236. https://doi.org/10.4236/eng.2010.24033.
- Sofiyev, A.H., Alizada, A.N., Akin, O., Valiyev, A., Avcar, M. and Adiguzel, S. (2011), "On the stability of FGM shells subjected to combined loads with different edge conditions and resting on elastic foundations", Acta Mechanica, 223(1), 189-204. https://doi.org/10.1007/s00707-011-0548-1.
- Timoshenko, S.P. (1921), "Uber die Stabilitat versteifter Platten", Eisenbau, 12, 147-163.
- Timoshenko, S.P. (1934), "The stability of the webs of plate girders", Eng-g. 138, 207-209.
- Van Vinh, P. and Huy, L.Q. (2022), "Finite element analysis of functionally graded sandwich plates with porosity via a new hyperbolic shear deformation theory", Defence Tech. 18(3), 490-508. https://doi.org/10.1016/j.dt.2021.03.006.
- Vinyas, M. (2020), "On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electro-magnetic conditions using HSDT", Compos. Struct., 240, 112044. https://doi.org/10.1016/j.compstruct.2020.112044.
- Wattanasakulpong, N., Prusty, B.G., Kelly, D.W. and Hoffman, M. (2012), "Free vibration analysis of layered functionally graded beams with experimental validation", Mater. Des.,36, 182-190. https://doi.org/10.1016/j.matdes.2011.10.049.
- Watts, G., Kumar, R., Patel, S.N. and Singh, S. (2021), "Dynamic instability of trapezoidal composite plates under non-uniform compression using moving kriging based meshfree method", Thin-Wall. Struct., 164, 107766. https://doi.org/10.1016/j.tws.2021.107766.
- Xiao, X., Bu, G., Ou, Z. and Li, Z. (2022), "Nonlinear in-plane instability of the confined FGP arches with nanocomposites reinforcement under radially-directed uniform pressure", Eng. Struct., 252, 113670. https://doi.org/10.1016/j.engstruct.2021.113670.
- Yaghoobi, H. and Yaghoobi, P. (2013), "Buckling analysis of sandwich plates with FGM face sheets resting on elastic foundation with various boundary conditions: an analytical approach", Meccanica, 48, 2019-2035. https://doi.org/10.1007/s11012-013-9720-0.