• Title/Summary/Keyword: hyperbolic theory

Search Result 154, Processing Time 0.022 seconds

PERTURBATION RESULTS FOR HYPERBOLIC EVOLUTION SYSTEMS IN HILBERT SPACES

  • Kang, Yong Han;Jeong, Jin-Mun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.1
    • /
    • pp.13-27
    • /
    • 2014
  • The purpose of this paper is to derive a perturbation theory of evolution systems of the hyperbolic second order hyperbolic equations. We give an example of a partial functional equation as an application of the preceding result in case of the mixed problems for hyperbolic equations of second order with unbounded principal operators.

An inverse hyperbolic theory for FG beams resting on Winkler-Pasternak elastic foundation

  • Sayyad, Atteshamuddin S.;Ghugal, Yuwaraj M.
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.6
    • /
    • pp.671-689
    • /
    • 2018
  • Bending, buckling and free vibration responses of functionally graded (FG) higher-order beams resting on two parameter (Winkler-Pasternak) elastic foundation are studied using a new inverse hyperbolic beam theory. The material properties of the beam are graded along the thickness direction according to the power-law distribution. In the present theory, the axial displacement accounts for an inverse hyperbolic distribution, and the transverse shear stress satisfies the traction-free boundary conditions on the top and bottom surfaces of the beams. Hamilton's principle is employed to derive the governing equations of motion. Navier type analytical solutions are obtained for the bending, bucking and vibration problems. Numerical results are obtained to investigate the effects of power-law index, length-to-thickness ratio and foundation parameter on the displacements, stresses, critical buckling loads and frequencies. Numerical results by using parabolic beam theory of Reddy and first-order beam theory of Timoshenko are specially generated for comparison of present results and found in excellent agreement with each other.

Finite Element Analysis of Functionally Graded Plates using Inverse Hyperbolic Shear Deformation Theory

  • Kulkarni, Kamlesh;Singh, Bhrigu Nath;Maiti, Dipak Kumar
    • International Journal of Aerospace System Engineering
    • /
    • v.3 no.1
    • /
    • pp.1-4
    • /
    • 2016
  • Functionally graded materials (FGMs) are becoming very popular in various industries due to their effectiveness of the utilization of their constituent elements. However, the modelling of these materials is difficult due to the complex nature of variation of material properties across the thickness. Many shear deformation theories have been developed and employed for the analysis of such functionally graded plates (FGPs). A recently developed inverse hyperbolic shear deformation theory has been successfully employed by Grover et al. [1] for the analysis of laminated composites and sandwich plates. The objective of the study is to obtain finite element solution for the structural analysis of functionally graded plates using inverse hyperbolic shear deformation theory. Finite element analysis facilitates the analysis of complex problems such as functionally graded plates with different boundary conditions and different loadings.

A refined nonlocal hyperbolic shear deformation beam model for bending and dynamic analysis of nanoscale beams

  • Bensaid, Ismail
    • Advances in nano research
    • /
    • v.5 no.2
    • /
    • pp.113-126
    • /
    • 2017
  • This paper proposes a new nonlocal higher-order hyperbolic shear deformation beam theory (HSBT) for the static bending and vibration of nanoscale-beams. Eringen's nonlocal elasticity theory is incorporated, in order to capture small size effects. In the present model, the transverse shear stresses account for a hyperbolic distribution and satisfy the free-traction boundary conditions on the upper and bottom surfaces of the nanobeams without using shear correction factor. Employing Hamilton's principle, the nonlocal equations of motion are derived. The governing equations are solved analytically for the edges of the beam are simply supported, and the obtained results are compared, as possible, with the available solutions found in the literature. Furthermore, the influences of nonlocal coefficient, slenderness ratio on the static bending and dynamic responses of the nanobeam are examined.

Static deflection and dynamic behavior of higher-order hyperbolic shear deformable compositionally graded beams

  • Bensaid, Ismail;Cheikh, Abdelmadjid;Mangouchi, Ahmed;Kerboua, Bachir
    • Advances in materials Research
    • /
    • v.6 no.1
    • /
    • pp.13-26
    • /
    • 2017
  • In this work we introduce a higher-order hyperbolic shear deformation model for bending and frees vibration analysis of functionally graded beams. In this theory and by making a further supposition, the axial displacement accounts for a refined hyperbolic distribution, and the transverse shear stress satisfies the traction-free boundary conditions on the beam boundary surfaces, so no need of any shear correction factors (SCFs). The material properties are continuously varied through the beam thickness by the power-law distribution of the volume fraction of the constituents. Based on the present refined hyperbolic shear deformation beam model, the governing equations of motion are obtained from the Hamilton's principle. Analytical solutions for simply-supported beams are developed to solve the problem. To verify the precision and validity of the present theory some numerical results are compared with the existing ones in the literature and a good agreement is showed.

GEOMETRY ON EXOTIC HYPERBOLIC SPACES

  • Kim, In-Kang
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.3
    • /
    • pp.621-631
    • /
    • 1999
  • In this paper we briefly describe the geometry of the Cayley hyperbolic plane and we show that every uniform lattice in quaternionic space cannot be deformed in the Cayley hyperbolic 2-plane. We also describe the nongeometric bending deformation by developing the theory of the Cartan angular invariant for quaternionic hyperbolic space.

  • PDF

FOCAL SURFACES AND EVOLUTES OF CURVES IN HYPERBOLIC SPACE

  • Hayashi, Ryota;Izumiya, Shyuichi;Sato, Takami
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.147-163
    • /
    • 2017
  • We define de Sitter focal surfaces and hyperbolic focal surfaces of hyperbolic space curves. As an application of the theory of unfoldings of function germs, we investigate the singularities of these surfaces. For characterizing the singularities of these surfaces, we discover a new hyperbolic invariants and investigate the geometric meanings.

Thomson Effect in Magneto-Thermoelastic Material with Hyperbolic two temperature and Modified Couple Stress Theory

  • Iqbal, Kaur;Kulvinder, Singh
    • Steel and Composite Structures
    • /
    • v.45 no.6
    • /
    • pp.851-863
    • /
    • 2022
  • This research deals with the study of the Thomson heating effect in magneto-thermoelastic homogeneous isotropic rotating medium, influenced by linearly distributed load and as a result of modified couple stress theory. The charge density is taken as a function of the time of the induced electric current. The heat conduction equation with energy dissipation and with hyperbolic two-temperature (H2T) is used to formulate the model of the problem. Laplace and Fourier transforms are used to solve this mathematical model. Various components of displacement, temperature change, and axial stress as well as couple stress are obtained from the transformed domain. To get the solution in physical domain, numerical inversion techniques have been employed. The Thomson effect with GN (Green-Nagdhi) -III theory and Modified Couple Stress Theory (MCST) is shown graphically on the physical quantities.

Effect of the micromechanical models on the bending of FGM beam using a new hyperbolic shear deformation theory

  • Zouatnia, Nafissa;Hadji, Lazreg
    • Earthquakes and Structures
    • /
    • v.16 no.2
    • /
    • pp.177-183
    • /
    • 2019
  • In this paper, a new refined hyperbolic shear deformation beam theory for the bending analysis of functionally graded beam is presented. The theory accounts for hyperbolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the functionally graded beam without using shear correction factors. In addition, the effect of different micromechanical models on the bending response of these beams is studied. Various micromechanical models are used to evaluate the mechanical characteristics of the FG beams whose properties vary continuously across the thickness according to a simple power law. Based on the present theory, the equilibrium equations are derived from the principle of virtual work. Navier type solution method was used to obtain displacement and stresses, and the numerical results are compared with those available in the literature. A detailed parametric study is presented to show the effect of different micromechanical models on the flexural response of a simply supported FG beams.

A new hyperbolic shear deformation plate theory for static analysis of FGM plate based on neutral surface position

  • Merazi, M.;Hadji, L.;Daouadji, T.H.;Tounsi, Abdelouahed;Adda Bedia, E.A.
    • Geomechanics and Engineering
    • /
    • v.8 no.3
    • /
    • pp.305-321
    • /
    • 2015
  • In this paper, a new hyperbolic shear deformation plate theory based on neutral surface position is developed for the static analysis of functionally graded plates (FGPs). The theory accounts for hyperbolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the beam without using shear correction factors. The neutral surface position for a functionally graded plate which its material properties vary in the thickness direction is determined. The mechanical properties of the plate are assumed to vary continuously in the thickness direction by a simple power-law distribution in terms of the volume fractions of the constituents. Based on the present new hyperbolic shear deformation plate theory and the neutral surface concept, the governing equations of equilibrium are derived from the principle of virtual displacements. Numerical illustrations concern flexural behavior of FG plates with Metal-Ceramic composition. Parametric studies are performed for varying ceramic volume fraction, volume fraction profiles, aspect ratios and length to thickness ratios. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions.