DOI QR코드

DOI QR Code

Synthesis of Highly Dispersible Metal Nanoparticles in P3HT:PCBM Layers and Their Effects on the Performance of Polymer Solar Cells

P3HT:PCBM 층 내 분산 가능한 금속 나노입자의 제조 및 이를 포함한 고분자 태양전지 소자의 특성에 관한 연구

  • Kim, Min-Ji (Powder&Ceramics Division, Korea Institute of Materials Science) ;
  • Choi, Gyu-Chae (Powder&Ceramics Division, Korea Institute of Materials Science) ;
  • Kim, Young-Kuk (Powder&Ceramics Division, Korea Institute of Materials Science) ;
  • Kim, Yang-Do (Department of Material Engineering, Pusan National University) ;
  • Baek, Youn-Kyoung (Powder&Ceramics Division, Korea Institute of Materials Science)
  • 김민지 (한국기계연구원 부설 재료연구소 분말/세라믹연구본부) ;
  • 최규채 (한국기계연구원 부설 재료연구소 분말/세라믹연구본부) ;
  • 김영국 (한국기계연구원 부설 재료연구소 분말/세라믹연구본부) ;
  • 김양도 (부산대학교 재료공학과) ;
  • 백연경 (한국기계연구원 부설 재료연구소 분말/세라믹연구본부)
  • Received : 2014.05.30
  • Accepted : 2014.06.21
  • Published : 2014.06.28

Abstract

In this study, we prepare polymer solar cells incorporating organic ligand-modified Ag nanoparticles (O-AgNPs) highly dispersed in the P3HT:PCBM layer. Ag nanoparticles decorated with water-dispersible ligands (WAgNPs) were also utilized as a control sample. The existence of the ligands on the Ag surface was confirmed by FT-IR spectra. Metal nanoparticles with different surface chemistries exhibited different dispersion tendencies. O-AgNPs were highly dispersed even at high concentrations, whereas W-AgNPs exhibited significant aggregation in the polymer layer. Both dispersion and blending concentration of the Ag nanoparticles in P3HT:PCBM matrix had critical effects on the device performance as well as light absorption. The significant changes in short-circuit current density ($J_{SC}$) of the solar cells seemed to be related to the change in the polymer morphology according to the concentration of AgNPs introduced. These findings suggested the importance of uniform dispersion of plasmonic metal nanoparticles and their blending concentration conditions in order to boost the solar cell performance.

Keywords

References

  1. C. Lungenschmied and A. Meyer: Sol. Energy Mater. Sol. Cells, 91 (2007) 379. https://doi.org/10.1016/j.solmat.2006.10.013
  2. G. Li, R. Zhu and Y. Yang: Nat. Photonics, 6 (2012) 153 https://doi.org/10.1038/nphoton.2012.11
  3. H. S. Choi, J. P. Lee, S. J. Park and J. Y. Kim: Nano Lett., 13 (2013) 2204. https://doi.org/10.1021/nl400730z
  4. Y. Xia and N. J. Halas: MRS Bulletin, 30 (2005) 338. https://doi.org/10.1557/mrs2005.96
  5. S. S. Kim, S. I. Na, D. Y. Kim and Y. C. Nah: Appl. Phys. Lett., 93 (2008) 073307. https://doi.org/10.1063/1.2967471
  6. S. W. Baek, J. H. Noh, C. H. Lee, M. K. Seo and J. Y. Lee: Scientific Report, 3 (2013) 1726. https://doi.org/10.1038/srep01726
  7. X. Li, H. Lu, W. C. H. Choy, W. E. I. Sha and A. H. P. Ho: Adv. Funct. Mater., 23 (2013) 2728. https://doi.org/10.1002/adfm.201202476
  8. H. C. Chen, S. W. Chou, W. H. Tseng, C. I. Wu and P. T. Chou: Adv. Funct. Mater., 22 (2012) 3975. https://doi.org/10.1002/adfm.201200218
  9. C. Li, J. Mei, S. Li, N. Lu, L. Wang, B. Chen and W. Dong: Nanotechnology, 21 (2010) 245602. https://doi.org/10.1088/0957-4484/21/24/245602
  10. Z. Xu, C. Shen, Y. l. Hou, H. j. Gao and S. Sun: Chem. Mater., 21 (2009) 1778. https://doi.org/10.1021/cm802978z
  11. J. M. Kim, J. H. Park, C. K. Lee and S. Y. Lee: Scientific Report, 4 (2013) 4602.
  12. S. H. Park, D. Moses, M. Leclerc, K. H. Lee and A. J. Heeger: Nat. Photon., 3 (2009) 297. https://doi.org/10.1038/nphoton.2009.69