• Title/Summary/Keyword: high conductivity

Search Result 2,862, Processing Time 0.035 seconds

Characteristics of electrodeposited bismuth telluride thin films with different crystal growth by adjusting electrolyte temperature and concentration

  • Yamaguchi, Masaki;Yamamuro, Hiroki;Takashiri, Masayuki
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1513-1522
    • /
    • 2018
  • Bismuth telluride ($Bi_2Te_3$) thin films were prepared with various electrolyte temperatures ($10^{\circ}C-70^{\circ}C$) and concentrations [$Bi(NO_3)_3$ and $TeO_2:1.25-5.0mM$] in this study. The surface morphologies differed significantly between the experiments in which these two electrodeposition conditions were separately adjusted even though the applied current density was in the same range in both cases. At higher electrolyte temperatures, a dendrite crystal structure appeared on the film surface. However, the surface morphology did not change significantly as the electrolyte concentration increased. The dendrite crystal structure formation in the former case may have been caused by the diffusion lengths of the ions increasing with increasing electrolyte temperature. In such a state, the reactive points primarily occur at the tops of spiked areas, leading to dendrite crystal structure formation. In addition, the in-plane thermoelectric properties of $Bi_2Te_3$ thin films were measured at approximately 300 K. The power factor decreased drastically as the electrolyte temperature increased because of the decrease in electrical conductivity due to the dendrite crystal structure. However, the power factor did not strongly depend on the electrolyte concentration. The highest power factor [$1.08{\mu}W/(cm{\cdot}K^2$)] was obtained at 3.75 mM. Therefore, to produce electrodeposited $Bi_2Te_3$ films with improved thermoelectric performances and relatively high deposition rates, the electrolyte temperature should be relatively low ($30^{\circ}C$) and the electrolyte concentration should be set at 3.75 mM.

Smelting of Platinum Group Metals and Recycling of Spent Catalyst (백금족 금속의 제련과 폐촉매의 리사이클링)

  • Son, Injoon;Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.30 no.3
    • /
    • pp.18-29
    • /
    • 2021
  • Platinum group metals (PGMs) are used in a wide range of application fields such as catalysts, electronic devices, electrodes, electrical devices, fuel cells and high temperature materials due to their excellent electrical and thermal conductivity as well as chemical resistivity. Platinum group elements are generally associated with nickel-copper sulfides in magmatic rocks. Depending on the relative concentrations of the PGMs, they are produced either as the primary products or as by-products of the nickel and copper. However, PGMs natural resource deposits are strictly limited in countries such as South Africa and Russia. The annual supply of PGMs is only under 500 t. Considering the limited supply of PGMs, there will be a noticeable increase in the supply risk associated with PGMs in the near future. Therefore, it is extremely important to recover PGMs from secondary resources such as spent catalysts. This paper reviews on overview of PGMs extraction and recycling processes.

Base Flow Estimation in Uppermost Nakdong River Watersheds Using Chemical Hydrological Curve Separation Technique (화학적 수문곡선 분리기법을 이용한 낙동강 최상류 유역 기저유출량 산정)

  • Kim, Ryoungeun;Lee, Okjeong;Choi, Jeonghyeon;Won, Jeongeun;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.489-499
    • /
    • 2020
  • Effective science-based management of the basin water resources requires an understanding of the characteristics of the streams, such as the baseflow discharge. In this study, the base flow was estimated in the two watersheds with the least artificial factors among the Nakdong River watersheds, as determined using the chemical hydrograph separation technique. The 16-year (2004-2019) discontinuous observed stream flow and electrical conductivity data in the Total Maximum Daily Load (TMDL) monitoring network were extended to continuous daily data using the TANK model and the 7-parameter log-linear model combined with the minimum variance unbiased estimator. The annual base flows at the upper Namgang Dam basin and the upper Nakdong River basin were both analyzed to be about 56% of the total annual flow. The monthly base flow ratio showed a high monthly deviation, as it was found to be higher than 0.9 in the dry season and about 0.46 in the rainy season. This is in line with the prevailing common sense notion that in winter, most of the stream flow is base flow, due to the characteristics of the dry season winter in Korea. It is expected that the chemical-based hydrological separation technique involving TANK and the 7-parameter log-linear models used in this study can help quantify the base flow required for systematic watershed water environment management.

Characteristics by deposition and heat treatment of Cr and Al thin film on stainless steel (금속 기판위에 Cr과 Al 증착 및 열처리 융합 기술에 의한 표면 형상 변화)

  • Kim, Kyoung-Bo;Lee, Jongpil;Kim, Moojin
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.3
    • /
    • pp.167-173
    • /
    • 2021
  • There is an increasing interest in manufacturing various electronic devices on a bendable substrate. In this paper, we observed a surface morphology by annealing for 20 minutes at temperatures of 150 ℃, 350 ℃, and 550 ℃, respectively, with samples coated by chromium and aluminum. Data on surfaces are investigated using high-resolution SEM and AFM that can measure roughness up to nm. There is no difference from the sample without heat treatment up to 350 ℃, but the change of crystal grains can be observed at 550 ℃. In the future, for application to the flexible optoelectronic field, additional characteristics such as electrical conductivity and reflectivity will be analyzed and optical devices will be manufactured. In conclusion, we will explore the possibility of applying metal materials to flexible electronic devices.

Saltwater Intrusion Monitoring Evaluation through Automatic Vertical Line Method in a Costal Aquifer of the Eastern Part of Jeju Island (수직 라인 관측시스템을 이용한 제주 동부 해안대수층에서 해수침투 모니터링 평가)

  • Jang, Hojune;Ha, Kyoochul;Hwang, Inuk;Kim, Gee-Pyo;Park, Won-Bae
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.3
    • /
    • pp.1-13
    • /
    • 2021
  • Groundwater monitoring is commonly practiced with real-time sensors placed in several depth spots in aquifer. However, this method only provides monitoring data at the point where the sensors are installed. In this study, we developed a vertical line monitoring system (VLMS) that can provide continuous data of groundwater parameters along the vertical depth. The device was installed in a well located on the coast of the eastern part of Jeju island to monitor electrical conductivity, temperature, salinity, pH, dissolved oxygen, and oxidation-reduction potential over approximately 3 months from September 11 to December 3, 2020. The results indicated that the groundwater levels fluctuated with the tidal change of seawater level, and the upper and lower boundaries of the freshwater and saltwater zone in the groundwater were located at below 16 m and 36 m of mean sea level, respectively. There was a large variation in EC values during the high tide and temperature change was the greatest during flow tide. Although further investigation is needed for improvement of the device to obtain more accurate and reliable data, the device has a potential utility to provide fundamental data to understand the seawater intrusion and transport mechanisms in coastal aquifers.

Prediction of Alcohol Consumption Based on Biosignals and Assessment of Driving Ability According to Alcohol Consumption (생체 신호 기반 음주량 예측 및 음주량에 따른 운전 능력 평가)

  • Park, Seung Won;Choi, Jun won;Kim, Tae Hyun;Seo, Jeong Hun;Jeong, Myeon Gyu;Lee, Kang In;Kim, Han Sung
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.27-34
    • /
    • 2022
  • Drunk driving defines a driver as unable to drive a vehicle safely due to drinking. To crack down on drunk driving, alcohol concentration evaluates through breathing and crack down on drinking using S-shaped courses. A method for assessing drunk driving without using BAC or BrAC is measurement via biosignal. Depending on the individual specificity of drinking, alcohol evaluation studies through various biosignals need to be conducted. In this study, we measure biosignals that are related to alcohol concentration, predict BrAC through SVM, and verify the effectiveness of the S-shaped course. Participants were 8 men who have a driving license. Subjects conducted a d2 test and a scenario evaluation of driving an S-shaped course when they attained BrAC's certain criteria. We utilized SVR to predict BrAC via biosignals. Statistical analysis used a one-way Anova test. Depending on the amount of drinking, there was a tendency to increase pupil size, HR, normLF, skin conductivity, body temperature, SE, and speed, while normHF tended to decrease. There was no apparent change in the respiratory rate and TN-E. The result of the D2 test tended to increase from 0.03% and decrease from 0.08%. Measured biosignals have enabled BrAC predictions using SVR models to obtain high Figs in primary and secondary cross-validations. In this study, we were able to predict BrAC through changes in biosignals and SVMs depending on alcohol concentration and verified the effectiveness of the S-shaped course drinking control method.

Estimating TOC Concentrations Using an Optically-Active Water Quality Factors in Estuarine Reservoirs (광학특성을 가진 수질변수를 활용한 하구 담수호 내 TOC 농도 추정)

  • Kim, Jinuk;Jang, Wonjin;Shin, Jaeki;Kang, Euntae;Kim, Jinhwi;Park, Yongeun;Kim, Seongjoon
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.6
    • /
    • pp.531-538
    • /
    • 2021
  • In this study, the TOC in six estuarine reservoirs in the West Sea (Ganwol, Namyang, Daeho, Bunam, Sapkyo, and Asan) was estimated using optically-active water quality factors by the water environment monitoring network. First, specification data and land use maps of each estuarine reservoir were collected. Subsequently, water quality data from 2013 to 2020 were collected. The data comprised of 11 parameters: pH, dissolved oxygen, BOD, COD, suspended solids (SS), total nitrogen, total phosphorus, water temperature, electrical conductivity, total coliforms, and chlorophyll-a (Chl-a). The TOC in the estuarine reservoirs was 4.9~7.0 mg/L, with the highest TOC of 7.0 mg/L observed at the Namyang reservoir, which has a low shape coefficient and high drainage density. The correlation of TOC with water quality factors was also analyzed, and the correlation coefficients of Chl-a and SS were 0.28 and 0.19, respectively, while the correlation coefficients of these factors in the Namyang reservoir were 0.42 and 0.27, respectively. To improve the estimation of TOC using Chl-a and SS, the TOC was averaged in 5 mg/L units, and Chl-a and SS were averaged. Correlation analysis was then performed and the R2 of Chl-a-TOC was 0.73. The R2 of SS-TOC was 0.73 with a non-linear relationship. TOC had a significant non-linear relationship with Chl-a and SS. However, the relationship should be assessed in terms of the spatial and temporal variations to construct a reliable remote sensing system.

Deposition behavior of cyanide-free electroless Au plating solution using thiomalic acid as complexing agent and aminoethanethiol as reducing agent and characteristics of plated Au film (티오말산을 착화제로 하고 아미노에탄티올을 환원제로 하는 비시안계 무전해 Au 도금액의 석출 거동 및 도금 특성)

  • Han, Jaeho;Kim, DongHyun
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.2
    • /
    • pp.102-119
    • /
    • 2022
  • Gold plating is used as a coating of connecter in printed circuit boards, ceramic integrated circuit packages, semiconductor devices and so on, because the film has excellent electric conductivity, solderability and chemical properties such as durability to acid and other chemicals. As increasing the demand for miniaturization of printed circuit boards and downsizing of electronic devices, several types of electroless gold plating solutions have been developed. Most of these conventional gold plating solutions contain cyanide compounds as a complexing agent. The gold film obtained from such baths usually satisfies the requirements for electronic parts mentioned above. However, cyanide bath is highly toxic and it always has some possibility to cause serious problems in working environment or other administrative aspects. The object of this investigation was to develop a cyanide-free electroless gold plating process that assures the high stability of the solution and gives the excellent solderability of the deposited film. The investigation reported herein is intended to establish plating bath composition and plating conditions for electroless gold plating, with thiomalic acid as a complexing agent. At the same time, we have investigated the solution stability against nickel ion and pull strength of solder ball. Furthermore, by examining the characteristics of the plated Au plating film, the problems of the newly developed electroless Au plating solution were improved and the applicability to various industrial fields was examined. New type electroless gold-plating bath which containing thiomalic acid as a complexing agent showing so good solution stability and film properties as cyanide bath. And this bath shows the excellent stability even if the dissolved nickel ion was added from under coated nickel film, which can be used at the neutral pH range.

Research Trends of Carbon Composite Film with Electromagnetic Interference Shielding and High Heat Dissipation (탄소 복합재 기반 전자파 차폐 및 고방열 일체형 필름 연구동향)

  • Park, Seong-Hyun;Kim, Myounghun;Kim, Kwang-Seok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.4
    • /
    • pp.1-10
    • /
    • 2021
  • Recently, electronic components are becoming smaller and highly integrated. As a result, electromagnetic interference (EMI) and heat generation problems must be solved simultaneously with a small area and thickness. Graphene composites and graphite composites are lightweight materials that can simultaneously solve EMI shielding and heat dissipation problems with excellent electrical and thermal conductivity. With the recent development of synthetic technology and composite manufacturing technology, the research to application of their composites is increasing. In this paper, we reviewed the latest researches on composite films of graphene and graphite for EMI shielding and heat dissipation.

Effect of Channel and Gate Structures on Electrical Characteristics of Oxide Thin-Film Transistors (Channel과 gate 구조에 따른 산화물 박막트랜지스터의 전기적 특성 연구)

  • Kong, Heesung;Cho, Kyoungah;Kim, Jaybum;Lim, Junhyung;Kim, Sangsig
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.500-505
    • /
    • 2022
  • In this study, we designed oxide thin-film transistors (TFTs) with dual gate and tri layered split channels, and investigated the structural effect of the TFTs on the electrical characteristics. The dual gates played a key role in increasing the driving current, and the channel structure of tri layers and split form contributed to the increase in the carrier mobility. The tri layered channels consisting of the a-ITGZO and two ITO layers inserted between the gate dielectric and a-ITGZO led to the increase in the on-current by using ITO layers with high conductivity, and the split channels lowered series resistance of the channels. Compared with the mobility (15 cm2/V·s) of the single gate a-ITGZO TFT, the mobility (134 cm2/V·s) of the dual gate tri-layer split channel TFT was remarkably enhanced by the structural effect.