Acknowledgement
본 연구는 전라북도 뿌리기술 고도화를 위한 인프라 활용 기술개발지원사업(EM210019)과 중소벤처기업부와 한국산업기술진흥원의 "지역특화산업육성+(R&D, S3094358)"사업의 지원을 받아 수행된 연구결과입니다.
References
- T. Sudo, H. Sasaki, N. Masuda and J. L. Drewniak, "Electromagnetic Interference (EMI) of System-on-Package (SOP)", IEEE Trans. Adv. Packag., 27(2), 304-314 (2004). https://doi.org/10.1109/TADVP.2004.828817
- C. Zweben, "Advanced Composites And Other Advanced Materials For Electronic Packaging Thermal Management", Proc. International Symposium on Advanced Packaging Materials Processes, Properties and Interfaces (IEEE Cat. No. 01TH8562), IEEE, 360-365 (2001).
- A. L. Moore, L. Shi, "Emerging challenges and materials for thermal management of electronics", Mater. Today, 17(4), 163-174 (2014). https://doi.org/10.1016/j.mattod.2014.04.003
- A. Iqbal, P. Sambyal and C. M. Koo, "2D MXenes for Electromagnetic Shielding: A Review", Adv. Funct. Mater., 30, 2000883 (2020). https://doi.org/10.1002/adfm.202000883
- F. M. Oliveira, R. Gusmao, "Recent Advances in the Electromagnetic Interference Shielding of 2D Materials beyond Graphene", ACS Appl. Electron. Mater., 2(10), 3048-3071 (2020). https://doi.org/10.1021/acsaelm.0c00545
- S. Geetha, K. K. Satheesh Kumar, C. R. Rao, M. Vijayan and D. C. Trivedi, "EMI Shielding: Methods and Materials-A Review", J. Appl. Polym. Sci., 112(4), 2073-2086 (2009). https://doi.org/10.1002/app.29812
- S. S. Sidhu, S. Kumar and A. Batish, "Metal Matrix Composites for Thermal Management: A Review", Crit. Rev. Solid State Mater. Sci., 41(2), 132-157 (2016). https://doi.org/10.1080/10408436.2015.1076717
- S. Sankaran, K. Deshmukh, M. B. Ahamed and S. K. Pasha, "Recent Advances in Electromagnetic Interference Shielding Properties of Metal and Carbon Filler Reinforced Flexible Polymer Composites: A Review", Compos. Part A Appl. Sci. Manuf., 114, 49-71 (2018). https://doi.org/10.1016/j.compositesa.2018.08.006
- S. S. Pradhan, L. Unnikrishnan, S. Mohanty and S. K. Nayak, "Thermally Conducting Polymer Composites with EMI Shielding: A Review", J. Electron. Mater., 49(3), 1749-1764 (2020). https://doi.org/10.1007/s11664-019-07908-x
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi and M. W. Barsoum, "Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2", Adv. Mater., 23, 4248-4253 (2011). https://doi.org/10.1002/adma.201102306
- A. Bhat, S. Anwer, K. S. Bhat, M. I. H. Mohideen, K. Liao and A. Qurashi, "Prospects Challenges and Stability of 2D MXenes for Clean Energy Conversion and Storage Applications", NPJ2D Mater. Appl., 5(1), 1-21 (2021). https://doi.org/10.1038/s41699-020-00190-0
- R. Liu, W. Li, "High-Thermal-Stability and High-Thermal-Conductivity Ti3C2Tx MXene/Poly(vinyl alcohol) (PVA) Composites", ACS Omega, 3, 2609-2617 (2018). https://doi.org/10.1021/acsomega.7b02001
- W. Kong, H. Kum, S. Bae, J. Shim, H. Kim, L. Kong, Y. Meng, K. Wang, C. Kim and J. Kim, "Path Towards Graphene Commercialization from Lab to Market", Nat. Nanotechnol., 14(10), 927-938 (2019). https://doi.org/10.1038/s41565-019-0555-2
- G. M. da Costa, C. M. Hussain, "Ethical, Legal, Social and Economics Issues of Graphene", Compr. Anal. Chem., 91, 263 (2020). https://doi.org/10.1016/bs.coac.2020.08.010
- R. A. Reynolds, R. A. Greinke, "Influence of Expansion Volume of Intercalated Graphite on Tensile Properties of Flexible Graphite", Carbon NY, 39(3), 479-481 (2001). https://doi.org/10.1016/S0008-6223(00)00291-8
- Y. Leng, J. Gu, W. Cao and T. Y. Zhang, "Influences of Density and Flake Size on the Mechanical Properties of Flexible Graphite", Carbon, 7, 875-881 (1998).
- E. Zhou, J. Xi, Y. Guo, Y. Liu, Z. Xu, L. Peng, W. Gao, J. Ying, Z. Chen and C. Gao, "Synergistic Effect of Graphene and Carbon Nanotube for High-performance Electromagnetic Interference Shielding Films", Carbon, 133, 316-322 (2018). https://doi.org/10.1016/j.carbon.2018.03.023
- H. Jia, Q. Kong, X. Yang, L. Xie, G. Sun, L. Liang, J. Chen, D. Liu, Q. Guo and C. M. Chen, "Dual-functional Graphene/Carbon Nanotubes Thick Film: Bidirectional Thermal Dissipation and Electromagnetic Shielding", Carbon, 171, 329-340 (2021). https://doi.org/10.1016/j.carbon.2020.09.017
- Z. Wang, B. Mao, Q. Wang, J. Yu, J. Dai, R. Song, Z. Pu, D. He, Z. Wu and S. Mu, "Ultrahigh Conductive Copper/Large Flake Size Graphene Heterostructure Thin-Film with Remarkable Electromagnetic Interference Shielding Effectiveness", Small, 14(20), 1704332 (2018). https://doi.org/10.1002/smll.201704332
- R. Yan, K. Wang, C. Wang, H. Zhang, Y. Song and Q. Guo, J. Wang, "Synthesis and In-situ Functionalization of Graphene Films through Graphite Charging in Aqueous Fe2(SO4)3", Carbon, 107, 379-387 (2016). https://doi.org/10.1016/j.carbon.2016.06.018
- J. Li, L. Huang, Y. Yuan, Y. Li and X. He, "Mechanically Strong, Thermally Conductive and Flexible Graphene Composite Paper for Exceptional Electromagnetic Interference Shielding", Mater. Sci. Eng. B, 263, 114893 (2021). https://doi.org/10.1016/j.mseb.2020.114893
- Y. Liu, B. Qu, X. Wu, Y. Tian, K. Wu, B. Yu, R. Du, Q. Fu and F. Chen, "Utilizing Ammonium Persulfate Assisted Expansion to Fabricate Flexible Expanded Graphite Films with Excellent Thermal Conductivity by Introducing Wrinkles", Carbon, 153, 565-574 (2019). https://doi.org/10.1016/j.carbon.2019.07.079
- Y. Liu, K. Zhang, Y. Mo, L. Zhu, B. Yu, F. Chen and Q. Fu, "Hydrated Aramid Nanofiber Network Enhanced Flexible Expanded Graphite Films Towards High EMI Shielding And Thermal Properties", Compos. Sci. Technol., 168, 28-37 (2018). https://doi.org/10.1016/j.compscitech.2018.09.005
- Y. Liu, J. Zeng, D. Han, K. Wu, B. Yu, S. Chai, F. Chen and Q. Fu, "Graphene Enhanced Flexible Expanded Graphite Film with High Electric, Thermal Conductivities and EMI Shielding at Low Content", Carbon, 133, 435-445 (2018). https://doi.org/10.1016/j.carbon.2018.03.047
- A. A. Balandin, "Thermal Properties of Graphene and Nanostructured Carbon Materials", Nat. Mater., 10(8), 569-581 (2011). https://doi.org/10.1038/nmat3064
- A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C. N. Lau, "Superior Thermal Conductivity of Single-Layer Graphene", Nano Lett., 8(3), 902-907 (2008). https://doi.org/10.1021/nl0731872
- S. Stankovich, D. A, Dikin, G. H. Dommett, K. M. Kohlhass, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen and R. S. Ruoff, "Graphene-based Composite Materials", Nature, 442, 282-286 (2006). https://doi.org/10.1038/nature04969
- L. A. Jauregui, Y. Yue, A. N. Sidorov, J. Hu, Q. Yu, G. Lopez, R. Jalilian, D. K. Benjamin, D. A. Delk, W. Wu, G. Lopez, R. Jalilian, D. K. Benjamin, D. A. Delk, W. Wu, Z. Liu, X. Wang, Z. Jiang, X. Ruan, J. Bao, S. S. Pei and Y. P. Chen, "Thermal Transport in Graphene Nanostructures: Experiments and Simulations", ECS Trans., 28(5), 73-83 (2010). https://doi.org/10.1149/1.3367938
- H. Gao, K. Zhu, G. Hu and C. Xue, "Large-scale Graphene Production by Ultrasound-assisted Exfoliation of Natural Graphite in Supercritical CO2/H2O Medium", Chem. Eng. J., 308, 872-879 (2017). https://doi.org/10.1016/j.cej.2016.09.132
- M. D. D. La, S. Bhargava and S. V. Bhosale, "Improved and A Simple Approach For Mass Production of Graphene Nanoplatelets Material", Chemistry Select, 1(5), 949-952 (2016).
- S. Dubin, S. Gilje, K. Wang, V. C. Tung, K. Cha, A. S. Hall, J. Farrar, R. Varshneya, Y. Yang and R. B. Kaner, "One-Step, Solvothermal Reduction Method for Producing Reduced Graphene Oxide Dispersion in Organic Solvents", ACS Nano, 4(7), 3845-3852 (2010). https://doi.org/10.1021/nn100511a
- K. Ai, Y. Liu, L. Lu, X. Cheng and L. Huo, "A Novel Strategy for Making Soluble Reduced Graphene Oxide Sheets Cheaply by Adopting an Endogenous Reducing Agent", J. Mater. Chem., 21(10), 3365-3370 (2011). https://doi.org/10.1039/c0jm02865g
- S. Mao, H. Pu and J. Chen, "Graphene Oxide and its Reduction: Modeling and Experimental Progress", RSC Adv., 2(7), 2643-2662 (2012). https://doi.org/10.1039/c2ra00663d
- Y. Hong, Z. Wang and X. Jin, "Sulfuric Acid Intercalated Graphite Oxide for Graphene Preparation", Sci. Rep., 3(1), 3439 (2013) https://doi.org/10.1038/srep03439
- K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi and B. H. Hong, "Large-scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes", Nature, 457, 706-710 (2009). https://doi.org/10.1038/nature07719
- P. W. Sutter, J. Flege and E. A. Sutter, "Epitaxial Graphene on Ruthenium", Nat. Mater., 7, 406-411 (2008). https://doi.org/10.1038/nmat2166
- Technology Org, "Scientists Found a Way to Make Graphene 200 Times Cheaper and Greener" (2019).
- Investing News Network, "What Factors Impact Graphene Cost?" (2021).
- The Graphene Council, "Rice Lab Turns Trash into Valuable Graphene in a Flash" (2020).
- D. Lopez-Diaz, M. Lopez Holgado, J. L. Garcia-Fierro and M. M. Velazquez, "Evolution of the Raman Spectrum with the Chemical Composition of Graphene Oxide", J. Phys. Chem. C, 121, 20489-20497 (2017). https://doi.org/10.1021/acs.jpcc.7b06236
- M. Sang, J. Shin, K. Kim and K. J. Yu, "Electronic and Thermal Properties of Graphene and Recent Advances in Graphene Based Electronics Applications", Nanomaterials, 9(3), 374 (2019). https://doi.org/10.3390/nano9030374
- B. Marinho, M. Ghislandi, E. Tkalya, C. E. Koning and G. de With, "Electrical Conductivity of Compacts of Graphene, Multi-wall Carbon Nanotubes, Carbon Black, and Graphite Powder", Powder Technol., 221, 351-358 (2012). https://doi.org/10.1016/j.powtec.2012.01.024
- N. Deprez, D. S. McLachlan, "The Analysis of the Electrical Conductivity of Graphite Conductivity of Graphite Powders During Compaction", J. Phys. D: Appl. Phys., 21, 101-107 (1988). https://doi.org/10.1088/0022-3727/21/1/015
- Roskill, "Natural & Synthetic Graphite: Outlook to 2030" (2020).
- Fastmarkets IM, "Graphite Prices Steady Despite Underlying Supply Concerns" (2021).
- D. Li, M. B. Muller, S. Gilje, R. B. Kaner and G. G. Wallace, "Processable Aqueous Dispersions of Graphene Nanosheets", Nat. Nanotechnol., 3(2), 101-105 (2008). https://doi.org/10.1038/nnano.2007.451
- S. Pei, J. Zhao, J. Du, W. Ren and H. M. Cheng, "Direct Reduction of Graphene Oxide Films into Highly Conductive and Flexible Graphene Films by Hydrohalic Acids", Carbon, 48(15), 4466-4474 (2010). https://doi.org/10.1016/j.carbon.2010.08.006