This paper suggests an e-learning system model, a goal-driven personalized e-learning system, which increase the effectiveness of learning. An e-learning system following this model makes the learner choose the learning goal. The learner's choice would lead learning. Therefore, the system enables a personalized adaptive learning, which will raise the effectiveness of learning. Moreover, this paper proposes a SCORM standard, which modifies SCORM 2004 that has been insufficient to implement the "goal driven personalized e-learning system." We add a data model representing the goal that motivates learning, and propose a standard for statistics on learning objects usage. We propose each standard for contents model and sequencing information model which are parts of "goal driven personalized e-learning system." We also propose that manifest file should be added for the standard for contents model, and the file which represents the information of hierarchical structure and general learning paths should be added for the standard for sequencing information model. As a result, the system could sequence and search learning objects. We proposed an e-learning system and modified SCORM standards by considering the many factors of adaptive learning. We expect that the system enables us to optimally design personalized e-learning system.
KIPS Transactions on Software and Data Engineering
/
v.5
no.1
/
pp.13-20
/
2016
In this paper, we propose an object recognition system that can effectively find out its category, its instance name, and several attributes from the color and depth images of an object with hierarchical feature learning. In the preprocessing stage, our system transforms the depth images of the object into the surface normal vectors, which can represent the shape information of the object more precisely. In the feature learning stage, it extracts a set of patch features and image features from a pair of the color image and the surface normal vector through two-layered learning. And then the system trains a set of independent classification models with a set of labeled feature vectors and the SVM learning algorithm. Through experiments with UW RGB-D Object Dataset, we verify the performance of the proposed object recognition system.
The Journal of Korean Academic Society of Nursing Education
/
v.25
no.4
/
pp.393-404
/
2019
Purpose: This study aims to investigate the influence of personality type, self-leadership, and positive psychological capital on the flow of learning of nursing students. Methods: The sample consisted of 179 nursing students. Data were analyzed using frequency, percentage, mean, standard deviation, t-test, ANOVA, $Scheff{\acute{e}}^{\prime}s$ test, Pearson's correlation coefficient analysis, and Hierarchical multiple regression. Results: Upon analysis, the relative influence of the variables that can improve learning flow, the influencing variables, were identified as self-leadership and self-efficacy. Conclusion: To increase the learning flow, supportive measures and strategies that increase positive psychological capital should be developed, successful cases of self-leadership be shared, and be incorporated into a culture that promotes learning flow. And to promote the learning flow, it needs political and environmental improvement, and institutional support of at the college level.
This study attempted to develop an efficient management plan that allows both workers and organizations to coexist by analyzing the factors that influence the level of organizational immersion of engineering students. Analysis methods included frequency analysis, t-test, pearson correlation analysis, and hierarchical analysis. Firstly, self-esteem and transfer of learning were influential factors on organizational commitment. Second, self-esteem and transfer of learning were influencing factors of self-efficacy. Third, self-efficacy was an influential factor in organizational commitment. Fourth, self-efficacy appeared as a mediating effect on self-esteem and organizational immersion in learning transfer. Therefore, it is necessary to look for various factors that can increase self-efficacy, and to find opportunities for students to be highly immersed in the organization while studying at the same time.
In these days, recommendation service in mobile environments is in the limelight due to the spread of mobile devices and an increase of information owing to advancement of computer network. The restaurant recommendation system reflecting user preference was proposed. This system uses Bayesian network to model user preference and analytical hierarchical process to recommend restaurants, but static inference model for user preference used in the system has some limitations that cannot manage changing user preference and enormous user survey must be preceded. This paper proposes a learning method for Bayesian network based on user requests. The proposed method is implemented on mobile devices and desktop, and we show the possibility of the proposed method through experiments.
Kim Jong-Won;Cho Hyun-Chan;Seo Jae-Yong;Cho Tae-Hoon;Lee Sung-Jun
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2006.05a
/
pp.125-129
/
2006
By advent of NNC(Neural Network Chip), it is possible that process in parallel and discern the importance of signal with learning oneself by experience in external signal. So, the design of general purpose operation unit using VHDL(VHSIC Hardware Description Language) on the existing FPGA(Field Programmable Gate Array) can replaced EN(Expert Network) and learning algorithm. Also, neural network operation unit is possible various operation using learning of NN(Neural Network). This paper present general purpose operation unit using hierarchical structure of EN. EN of presented structure learn from logical gate which constitute a operation unit, it relocated several layer. The overall structure is hierarchical using a module, it has generality more than FPGA operation unit.
Journal of Information Technology Applications and Management
/
v.17
no.2
/
pp.19-45
/
2010
This research has analyzed the differentiated influence of organizational variables(an organization's learning culture and organizational support networks) and personal variables(the individual's motivation to learn and self-efficacy) on the process of gaining and using of knowledge. These two variables have been regarded as the major variables for the successful learning of 6Sigma, according to Social Cognitive Theory. In addition, this research has proven the role structure of the abovementioned two variables through a suitable methodology(Hierarchical Linear Model). In regard to this methodology, the different hierarchical level of the personal variable and organizational variable was especially focused on, and the effect of interaction between the high level and the low level was considered in detail. Considering the current situation, in that the importance of organizational factor and personal factor has been emphasized but the accurate role of each variable has not been verified, the research model is thought to help to establish an effective strategy to implement 6 Sigma.
In this paper, we proposed a new pattern classifier which can be incrementally learned, be added new class in learning time, and handle with analog data. Proposed pattern classifier has hierarchical structure and the classification rate is improved by using different metric for each levels. Proposed model is based on the Gaussian ARTMAP which is an artificial neural network model for the pattern classification. We hierarchically constructed the Gaussian ARTMAP and proposed the Principal Component Emphasis(P.C.E) method to be learned different features in each levels. And we defined new metric based on the P.C.E. P.C.E is a method that discards dimensions whose variation are small, that represents common attributes in the class. And remains dimensions whose variation are large. In the learning process, if input pattern is misclassified, P.C.E are performed and the modified pattern is learned in sub network. Experimental results indicate that Hierarchical Gaussian ARTMAP yield better classification result than the other pattern recognition algorithms on variable data set including real applicable problem.
We propose a hierarchical architecture of ART2 Network for performance improvement and fast pattern classification model using fitness selection. This hierarchical network creates coarse clusters as first ART2 network layer by unsupervised learning, then creates fine clusters of the each first layer as second network layer by supervised learning. First, it compares input pattern with each clusters of first layer and select candidate clusters by fitness measure. We design a optimized fitness function for pruning clusters by measuring relative distance ratio between a input pattern and clusters. This makes it possible to improve speed and accuracy. Next, it compares input pattern with each clusters connected with selected clusters and finds winner cluster. Finally it classifies the pattern by a label of the winner cluster. Results of our experiments show that the proposed method is more accurate and fast than other approaches.
Journal of the Korean Institute of Intelligent Systems
/
v.16
no.4
/
pp.389-395
/
2006
This paper proposes the controller for biped robot using intelligent control algorithm. In order to simplify the complexity of biped robot control, manipulator of biped robot is divided into four modules. These modules are controlled by intelligent algorithm with Hierarchical Mixture of Experts(HME) using neural network. Also neural network having direct control method learns the inverse dynamics of biped robot. The HME, which is a network of tree structure, reallocates the input domain for the output by learning pattern of input and output. In this paper, as a result of learning HME repeatedly with EM algorithm, the controller for biped robot operating safety walking is designed by modelling dynamics of biped robot and generating virtual error of HME.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.