KSII Transactions on Internet and Information Systems (TIIS)
/
제9권11호
/
pp.4291-4310
/
2015
This paper investigates the traffic offloading over unlicensed bands for two-tier multi-mode small cell networks. We formulate this problem as a Stackelberg game and apply a hierarchical learning framework to jointly maximize the utilities of both macro base station (MBS) and small base stations (SBSs). During the learning process, the MBS behaves as a leader and the SBSs are followers. A pricing mechanism is adopt by MBS and the price information is broadcasted to all SBSs by MBS firstly, then each SBS competes with other SBSs and takes its best response strategies to appropriately allocate the traffic load in licensed and unlicensed band in the sequel, taking the traffic flow payment charged by MBS into consideration. Then, we present a hierarchical Q-learning algorithm (HQL) to discover the Stackelberg equilibrium. Additionally, if some extra information can be obtained via feedback, we propose an improved hierarchical Q-learning algorithm (IHQL) to speed up the SBSs' learning process. Last but not the least, the convergence performance of the proposed two algorithms is analyzed. Numerical experiments are presented to validate the proposed schemes and show the effectiveness.
Recently, Reinforcement Learning (RL) methods in MDP have been extended and applied to the POMDP problems. Currently, hierarchical RL methods are widely studied. However, they have the drawback that the learning time and memories are exhausted only for keeping the hierarchical structure, though they aren´t necessary. On the other hand, our "Labeling Q-learning (LQ-learning) proposed previously, has no hierarchical structure, but adopts a characteristic internal memory mechanism. Namely, LQ-1earning agent percepts the state by pair of observation and its label, and the agent can distinguish states, which look as same, but obviously different, more exactly. So to speak, at each step t, we define a new type of perception of its environment ~ot = (ot, $\theta$t), where of is conventional observation, and $\theta$t is the label attached to the observation. Then the conventional ...
For efficient interaction between humans and robots, robots should be able to understand the meaning and intention of human behaviors as well as recognize them. This paper proposes an interactive human intention reading method in which a robot develops its own knowledge about the human intention for an object. A robot needs to understand different human behavior structures for different objects. To this end, this paper proposes a hierarchical behavior knowledge network that consists of behavior nodes and directional edges between them. In addition, a human intention reading algorithm that incorporates reinforcement learning is proposed to interactively learn the hierarchical behavior knowledge networks based on context information and human feedback through human behaviors. The effectiveness of the proposed method is demonstrated through play-based experiments between a human and a virtual teddy bear robot with two virtual objects. Experiments with multiple participants are also conducted.
Coreference resolution is a task in discourse analysis that links several headwords used in any document object. We suggest pointer networks-based coreference resolution for Korean using multi-task learning (MTL) with an attention mechanism for a hierarchical structure. As Korean is a head-final language, the head can easily be found. Our model learns the distribution by referring to the same entity position and utilizes a pointer network to conduct coreference resolution depending on the input headword. As the input is a document, the input sequence is very long. Thus, the core idea is to learn the word- and sentence-level distributions in parallel with MTL, while using a shared representation to address the long sequence problem. The suggested technique is used to generate word representations for Korean based on contextual information using pre-trained language models for Korean. In the same experimental conditions, our model performed roughly 1.8% better on CoNLL F1 than previous research without hierarchical structure.
In the paper is proposed a hierarchical self-learning fuzzy controller for balancing and position control of an circular inverted pendulum system. To stabilize the pendulum at a specified position, the hierarchical fuzzy controller consists of a supervisory controller, a self-learning fuzzy controller, and a forced disturbance generator. Simulation example shows the effectiveness of the proposed method.
In the early 2020, COVID-19 changed the traditional way of teaching and learning. This paper aimed to explore the impact of college students' perception of course quality on their online learning satisfaction. A total of 4,812 valid samples were extracted, and the difference analysis and hierarchical regression analysis were used to make an empirical analysis of college students' online learning satisfaction. The research results were as follows. Firstly, there was no difference in online learning satisfaction among students by gender and grade. Secondly, learning assessment, course materials, course activities and learner interaction, and course production had a significant positive impact on online learning satisfaction. Course overview and course objectives had an insignificant correlation with online learning satisfaction. Thirdly, the total effect of online learning satisfaction was as follows. Course production had the greatest effect, followed by course activities and student-student interactions, followed by course materials. It was the learning evaluation that showed the least effect. This study can provide empirical reference for college teachers on how to continuously improve online teaching and increase students' satisfaction with online learning.
This research deals with an off-line learning method targeted for systematically constructing negotiation strategies in automated electronic commerce. Single-issue negotiation is assumed. Variants of competitive learning and hierarchical clustering method are devised and applied to extracting negotiation strategies, given historical negotiation data set and tactics. Our research is motivated by the following fact: evidence from both theoretical analysis and observations of human interaction shows that if decision makers have prior knowledge on the behaviors of opponents from negotiation, the overall payoff would increase. Simulation-based experiments convinced us that the proposed method is more effective than human negotiation in terms of the ratio of negotiation settlement and resulting payoff.
KSII Transactions on Internet and Information Systems (TIIS)
/
제11권5호
/
pp.2539-2554
/
2017
Regression-based image super resolution (SR) methods have shown great advantage in time consumption while maintaining similar or improved quality performance compared to other learning-based methods. In this paper, we propose a novel single image SR method based on hierarchical regression to further improve the quality performance. As an improvement to other regression-based methods, we introduce a hierarchical scheme into the process of learning multiple regressors. First, training samples are grouped into different clusters according to their geometry similarity, which generates the structure layer. Then in each cluster, a compact dictionary can be learned by Sparse Coding (SC) method and the training samples can be further grouped by dictionary atoms to form the detail layer. Last, a series of projection matrixes, which anchored to dictionary atoms, can be learned by linear regression. Experiment results show that hierarchical scheme can lead to regression that is more precise. Our method achieves superior high quality results compared with several state-of-the-art methods.
With tremendous advancement of information and communication technologies, mobile learning systems have been widely adopted in language learning contexts, and several frameworks have been developed for identifying and categorizing different factors of mobile-assisted language learning (MALL). However, pre-existing frameworks have limitations when evaluating the importance level of criteria. The purpose of this study is to develop a comprehensive hierarchical framework for identifying and categorizing success factors of MALL and prioritizing them according to the importance level. To do that, AHP method is used to quantitatively estimate weight values of MALL criteria. Results reveal that the priority of MALL criteria is ordered as follows: content, system, learner, language learning. Local weights of each criterion are also analyzed; for example, usefulness, accuracy, and authenticity are critical factors for improving MALL contents. Ease of use and mobility of MALL systems are also considered more critical than other systematic factors. In addition, availability of immediate feedback and self-directness has the highest weight values of importance. The findings of the study are discussed regarding hierarchical orders of MALL criteria and conclude that successful MALL implementation may be achieved if related elements are diversely measured and evaluated. Pedagogical implications and suggestions for further research are also presented.
최근, 컴퓨터 분야의 기계 학습(Machine Learning)과 딥러닝(Deep Learning) 등 컴퓨터 관련 학습이 각광을 받고 있다. 이들은 인공 신경망(Artificial Neural Network)을 이용하여 가장 하위 레벨로부터 학습을 시작하여, 최상위 레벨까지 그 결과를 전달하여 최종 결과를 산출하는 방식이다. 하위레벨로부터의 체계적인 학습을 통한 효과적인 성장 및 교육 방안에 대한 연구는 다양한 분야에서 이루어지고 있으나, 체계적인 규칙과 방법에 기반한 모델은 찾아보기가 힘들다. 이에, 본 논문에서는 성장 및 융합 모델인, TNT 모델(Transitive Nested Triangle Model)을 처음으로 제안한다. 제안하는 모델은 기하학적인 형태를 통해 형성된 각 기능들이 유기적 계층 관계를 형성하여, 상위로 성장 및 융합하면서, 그 결과가 반복 사용되는 순환적 재귀 모델이다. 즉, '수평적 형제 병합에 이은 상위로의 융합(Horizontal Sibling Merges and Upward Convergence)'의 분석적 방법이다. 이러한 모델은 공학, 디지털공학, 인문학, 예술학 등에 모두 적용될 수 있는 기본기적 이론으로, 본 연구에서는 제안하는 TNT 모델을 설명하는 것에 그 초점을 둔다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.