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Abstract

Coreference resolution is a task in discourse analysis that links several head-

words used in any document object. We suggest pointer networks-based core-

ference resolution for Korean using multi-task learning (MTL) with an

attention mechanism for a hierarchical structure. As Korean is a head-final

language, the head can easily be found. Our model learns the distribution by

referring to the same entity position and utilizes a pointer network to conduct

coreference resolution depending on the input headword. As the input is a

document, the input sequence is very long. Thus, the core idea is to learn the

word- and sentence-level distributions in parallel with MTL, while using a

shared representation to address the long sequence problem. The suggested

technique is used to generate word representations for Korean based on con-

textual information using pre-trained language models for Korean. In the same

experimental conditions, our model performed roughly 1.8% better on CoNLL

F1 than previous research without hierarchical structure.
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1 | INTRODUCTION

Coreference resolution [1,2] is a natural language proces-
sing (NLP) task that identifies and links words used in
different entity representations. This is useful when an
entity is represented by alternative words, aliases, acro-
nyms, pronouns, determiners, and other substitutes. The
information about the entity mentioned in the discourse
or document can be maintained consistently and accu-
rately if the reference relationship between the words
used as other expressions can be correctly determined.
Therefore, coreference resolution is critical in under-
standing the entities that appear in documents. It is a pre-
requisite for numerous higher-level NLP tasks used in

natural language understanding, including question
answering (QA), document summarization, machine
translation, and information extraction.

The span ranking-based model in English identifies
and ranks candidate spans in documents to perform core-
ference resolution, such as e2e-coref [3] and c2f-coref [4],
and the model has achieved significant performance.
However, because it extracts all spans from a document
and performs ranking for all spans with an attention
mechanism [5] the span ranking model has a time com-
plexity of Oðn4Þ. The head of a phrase determines the
syntactic structure and is a word that holds the meaning
of the phrase. As Korean is a head-final language, the
head always appears at the end of every phrase. Mention
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detection, which is a candidate for coreference resolution,
is performed using phrases, and the head-final character-
istics are reflected as is.

We define only nouns from a document as candidates
based on the head-final feature and perform ranking
using a pointer network (Ptr-net) [6] for the input docu-
ment. The time complexity is Oðn2Þ since our model only
needs to consider the number of words and nouns in the
input document. Ptr-net, an extended model of the recur-
rent neural network (RNN) encoder-decoder [7], uses an
attention mechanism to output positions corresponding
to an input sequence. Ptr-net can extract information by
pointing out a specific word in an input document or a
sentence.

Multi-task learning (MTL) [8] is a method of learning
several tasks simultaneously using a single model.
Because a model shares the information about related
tasks, MTL can effectively generalize the tasks, which
subsequently have a positive effect on one another. When
the data are limited, it is difficult for the model to deter-
mine which features are relevant and which are not.
Furthermore, MTL provides additional evidence to distin-
guish the relevance of features by focusing attention on
important features in other tasks [9]. Our model classifies
words that refer to the same entity based on the head.
We train the task of classifying the start boundary of the
mention and the mention information is shared with the
model parameters. Furthermore, we train the sentence
classification task alongside the coreference resolution as
an auxiliary task.

If the input sequence consists of several sentences,
the length of the input sequence becomes excessive, and
the performance is degraded. The hierarchical structure
model is more robust for long-term sequences because it
generates a context vector by encoding an input docu-
ment using both word- and sentence-level modeling. We
perform sentence-level encoding and calculate contextual
hierarchical attention at the word and sentence levels to
solve the problem of decreasing performance as the docu-
ment input sequence becomes longer. Each task is
defined as a separate task, and MTL is used to reflect the
context information of the word and sentence levels
calculated in the coreference resolution to shared
parameters.

Our contributions are summarized as follows:

• We use hierarchical architecture to encode sentence-
level context on Korean coreference resolution.

• We use MTL loss functions for word- and sentence-
levels to melt coreferent sentence information to word
level.

• We achieve a higher CoNLL F1 score than a previous
study without hierarchical structure.

2 | RELATED WORKS

Existing coreference resolution studies can be classified
as rule-, statistical-, and combined rule-/statistical-based
methods. Stanford’s model [10], which was a rule-based
method applied to multi-level rules using pronouns,
entity attributes, and named entity information [11], was
used to define a multi-sieve suitable for Korean corefer-
ence resolution. The mention-pair model [12] was a sta-
tistically based method for pairing present-mention and
arbitrary antecedents, which used machine learning to
solve coreferences. The method presented in Park and
others [11] was a model that used feed-forward neural
networks to combine rule- and statistical-based corefer-
ence resolutions. In Lee and others [13], end-to-end pro-
nominal coreference resolution was performed using Ptr-
net. However, the performance suffered on a document
with long sentences. Furthermore, Ptr-net was only used
on pronouns. Clark and Manning [14] trained an entity-
clustering model using the RNN and solved the corefer-
ence problem. In Clark and Manning [15], coreference
resolution was performed using reinforced learning to
rank mentions.

2.1 | Head-final coreference resolution

Language has the head-directional characteristic and is
composed of two structures: (1) right-branching head-
initial structures and (2) left-branching head-final struc-
tures. English has a head-initial structure, whereas
Korean and Japanese have a head-final structure. In Chi-
nese, noun phrases have a head-final structure, but some
verb phrases have a head-initial feature. Models such as
e2e-coref and c2f-coref are based on span ranking to per-
form coreference resolution in English, which is a head-
initial language. Currently, the span ranking model
assumes that all spans can be extracted from a document
containing n words as candidates; thus, the span ranking
model has S¼ðnðnþ1ÞÞ=2¼Oðn2Þ spans. Hence, the
search space of the span ranking-based coreference reso-
lution model is ðSðSþ1ÞÞ=2¼Oðn4Þ because the model
performs head attention to identify the head in the span
and ranks the extracted candidate spans. However, in
Korean, the head is always placed at the end of a noun
phrase because it is a head-final language. We assume
that all nouns are candidates for coreference resolution
using the head-final feature, and identify and link words
that represent the same entity as the candidate in the
input document. We use a Ptr-net based on the attention
mechanism, and the coreference resolution search space
of our model is OðnmÞ, where n is the number of words
and m is the number of nouns.
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2.2 | Hierarchical encoder-decoder

A hierarchical encoder-decoder (HRED) model was used
to perform model training and prediction by generating
not only word-level input sequences but also sentence-
level encodings, which are the upper layers of the input
sequence [16]. The HRED model included a word-level
encoder RNN, a sentence-level encoder RNN, and an
output-producing decoder RNN. The sentence-level
encoder RNN was generated from the hidden state of the
word-level encoder RNN. The decoder RNN performed
training and prediction using the hidden encoding state
of both the word and sentence encoders. The HRED
model was used in Serban and others [17] to convert the
token unit of the input sequence into word-level encod-
ing. The following token (i.e., the encoder input
sequence) was converted into sentence-level encoding.
The encodings were subsequently applied to a dialog
model. The method in Sordoni and others [18] used the
HRED model to generate query-level (i.e., word-level)
encoding from words in a query in the encoder input
sequence and then applied session-level (i.e., sentence-
level) encoding to the information retrieval model for
each query representation. In Lin and others [19], lan-
guage modeling for a document was performed using the
HRED model. The HRED model was used to create a
word- and sentence-level encodings in [20], which were
applied to document summarization.

2.3 | Multi-task learning

As with transfer and zero-shot learning, MTL has been
used extensively in machine learning to improve task
generalization using data containing multiple tasks,
because it can train the knowledge transfer process as a
single model. MTL has been applied to web searches in
NLP. Furthermore, the work of McCann and others [21]
and Xu and others [22] demonstrated successful results
in the machine reading comprehension task, which
understands input documents and questions, and finds
answers. Luong and others [23] proposed an MTL
method for translating tasks based on a sequence-to-
sequence model. Among these, the encoder is shared
among several tasks such as machine translation and
low-level parsing in the one-to-many setting, demonstrat-
ing that MTL is mutually beneficial.

3 | PROPOSED MODEL

Ptr-net is a model that outputs a position corresponding
to the input sequence using the RNN encoder-decoder,

based on the attention mechanism. It can solve problems
with variable-length output classes.

We model word- and sentence-level encoders using a
pre-training language model (PLM) with a large-capacity
corpus and a decoder, as shown in Figure 1. As shown in
Figure 1, our model generates a word-level representa-
tion from the PLM’s contextual information regarding
the document input and encodes the generated hidden
state with the RNN. In this case, we extract the vector of
the position corresponding to the end of the sentence to
create a sentence-level hidden state and encode the
extracted vectors with the RNN to create a sentence-level
representation.

The decoder input is formed by the extraction of the
hidden state corresponding to the noun position in the
word-level representation. The extracted hidden state is
encoded using the RNN. The decoder uses a gated self-
attention network [26] to calculate the alignment score
and reflect the relationship information from the decoder
sequence. Thereafter, coreference resolution, mention
start boundary classification, and sentence classification
with the word-referenced entity is performed using Ptr-
net in the output layer. We use a biaffine attention [27]
as the attention score function.

3.1 | Model input

3.1.1 | Task formulation

We define coreference resolution in Korean as a classifi-
cation task based on the ranking score of Ptr-net at the
document level. When a document is defined as D, it con-
tains ND sentences D¼fs1, s2, s3, :::, sNDg. Each sentence
S consists of NS words and s¼fx1, x2, x3, :::, xNSg. We
generate a context vector based on the PLM in Figure 1.

The training dataset consists of the word-level
encoder input sequence X ¼fx1, x2,…, xng, the encoder
input feature sequence F ¼ff 1, f 2,…, f ng, the decoder
input noun sequence U ¼fu1, u2,…, umg, the sentence-
level encoder input sequence P¼fp1, p2,…, plg, the core-
ference resolution output sequence Ya ¼fa1, a2,…, amg,
the mention detection output sequence
Yb ¼fb1, b2,…, bmg, and the sentence classification out-
put sequence Ye ¼fe1, e2,…, elg. In the above, n is the
length of the word-level encoder input sequence, m is the
length of the candidate sequence for the coreference reso-
lution extracted from the input document, and l is the
length of the sentence-level encoder input sequence.

Example of input sequence of encoder and decoder
In the following example, we present the input sequence
as the encoder input and extract nouns that are
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coreference resolution candidates to create a noun
sequence. The noun sequence is fed into the decoder as
input.

In Figure 1, the example of the input sequence and
noun sequence is as follows:

• Input sequence: 19. .(King Gwanggaeto the great is the
19th monarch of Goguryeo. His name is Damdeok, the
son of King Gogukyang.)

• Noun sequence: , , 19, , , , , , (King, Gwanggaeto, great,
19th, monarch, Goguryeo, His, name, Damdeok, son,
King, Gogukyang)

3.1.2 | BERT style input format

We assume that all nouns are candidates for coreference
resolution because we design a head-final structure-based
model and perform coreference resolution for the head.
The BERT approach used is a pre-trained model from the
electronics and telecommunications research institute
(ETRI),1 and the BERT vocabulary is BPE applied to mor-
phological analysis results.

An example follows:

• Raw sentence: 1910 3 .(Gyeongcheon is an article left
by martyr An Jung-geun in March 1910 ahead of his
execution.)

• Morphological analyzed sentence with POS-tag: /NNP
/JX 1910/SN /NNB 3/SN /NNP /NNP /NNG /JKS
/NNG /NNG /JKO /VV /EC /VV /ETM /NNG /VCP
/EF ./SF

• Applied BPE: /NNP_ /JX_ 19 10/SN_ /NNB_ 3/SN_
/NNP_ /NNP_ /NNG_ /JKS_ /NNG_ /NNG_ /JKO_
/VV_ /EC_ /VV_ /ETM_ /NNG_ /VCP_ /EF_ ./SF_

As in the previous example, we perform morphologi-
cal analysis on the raw sentence and add the morpheme
and part-of-speech (POS) tag to make it resemble “/NNP”
(An Jung-geun). We do not associate the POS tag with
the morpheme when using ELECTRA. Thereafter, we
use BPE with the sequence separated by subwords as the
model input. We apply BPE to one morpheme at a time
and identify the morphemes by appending _ to the final
token of the divided subwords.

Accordingly, we perform morphological analysis on
the input document before using it as model input with
BPE. The BERT pre-trained data input format [CLS] is
added as the first token of the input sequence and
[SEP] as the final token. The output results in Figure 1
are the position of the antecedent in the coreference
resolution, the starting boundary of the mention, and
the position of the sentence containing the antecedent.
A location to be resolved is pointed to and output as a
result if it exists as a coreferent, mention boundary, or
sentence position. Otherwise, the position of [CLS], the
first token in the input sequence, is output. The first
token among the tokens applying BPE to the morpheme

F I GURE 1 RNN encoder-decoder-based Ptr-net with MTL for contextual hierarchical attention. The input is the application of byte

pair encoding (BPE) to the result of the morpheme analysis. The encoder consists of word- and sentence-level encodings, and the PLM is

BERT [24] or ELECTRA [25]. The sentence-level input is a copy of the vector corresponding to the end of the sentence from the hidden state

created by the word-level encoder. The yellow dashed arrow line indicates the copy of the sentence vector. The decoder input is a copy of the

vector corresponding to the noun position from the encoder. The red dashed arrow line represents the decoder input, which is a copy of the

noun vector. The decoder output is the position of a word with the same entity meaning as the input word, the start boundary of the

mention, and the position of the sentence containing the referenced word

1(http://aiopen.etri.re.kr/)
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is defined as the pointing criterion to point to the posi-
tion of the coreference resolution entity or the mention
start boundary.

3.1.3 | Input features

We use the following features for the coreference resolu-
tion: word boundary (word), morpheme boundary
(morp), dependency parsing (dep), named-entity recogni-
tion (NER), and document type (dtype).

The features are described as follows:

• Word boundary (word): We use the word boundary
feature to learn the word range characteristics of the
coreference resolution expressed in word units. The
word starting token is denoted by the B tag and the
subsequent token is denoted by the I tag.

• Morpheme boundary (morp): We use the morpheme
boundary feature to reflect the morpheme range char-
acteristics of the morphological analysis result. The
starting token of the morpheme is morp-B, and the fol-
lowing tokens are classified with the same tag as
morp-I. When using a PLM like ELECTRA, we use the
POS tag attached to the morpheme boundary tag.

• Dependency parsing (dep): We use the dependency
parsing label information as a feature to reflect the
structural and semantic information of the input sen-
tences. The B and I tags are attached in the same way
as for the word boundary feature because dependency
parsing is a word unit.

• Named-entity recognition (NER): We use the type
information for each named entity that appears as a
feature in the document. The BIO tag is used by the
NER.

• Document type (dtype): This feature determines the
type of a given document, which we define as question
and answer.

3.2 | Model architecture

3.2.1 | Encoder

Word level
Following the morphological analysis, the model is fed
an input sequence tokenized with BPE. Our PLM-based
model generates token, segment, and position embed-
dings for the input sequence and combines them. There-
after, the model uses the transformer to generate hidden
states for the PLM input sequence, concatenates the hid-
den state of the PLM output with the input feature repre-
sentation, and encodes it as a bidirectional simple

recurrent unit (biSRU) [28]. The biSRU generates ri as
in (1), where ei i the hidden states concatenated to the
PLM and the feature representation’s output-hidden
states.

ri ¼ biSRUðri�1,eiÞ: ð1Þ

Sentence level
As indicated in Figure 1, we extract the vector to be used
in the sentence-level encoder from the hidden states
generated by the word-level encoder. Assuming that
the vector of each sentence’s final position is a
sentence representation, we generate the sentence-level
hidden states rpj by sentence encoding with biSRU(.).
The sentence-level hidden states rsj are generated
using (2).

rsj ¼ biSRUðrsj�1,rpjÞ: ð2Þ

3.2.2 | Decoder

In Figure 1, the decoder input is rut , which extracts the
hidden state corresponding to the noun ut from the
word-level encoded hidden states ri. We model the con-
textual information between nouns using biSRU(.) in the
decoder, as indicated in (3).

rht ¼ biSRUðrht�1, rutÞ: ð3Þ

Self-Attention Module
We apply a gated self-matching layer to model the scores
between similar heads, with the following equations:

ht ¼ biSRUðht�1, gtÞ, ð4Þ

gt ¼ sigmoidðWg½hh
t ;ct�Þ

K
½hh

t ;ct�, ð5Þ

ct ¼
Xm

k¼1

αt,kh
h
t , ð6Þ

αt,k ¼ expðhh
kWαh

h
t0 Þ=

X

k

expðhh
kWαh

h
t Þ, ð7Þ

where ct is the context vector of all nouns and gt is a vec-
tor generated from an additional gate. The additional gate
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concatenates the context vector ct and the hidden state
hh
t , then uses a sigmoid gate to convert the significant

values of the two vectors into larger values and the insig-
nificant values into smaller ones. The decoder models gt
with the gate applied and ht generated by biSRU(.).

Deep Biaffine score
We apply elu [29] to the final hidden states ht of the
decoder, as in Dozat and Manning [27], to output the cor-
eference resolution, mention start boundary, and sen-
tence classification, and the decoder generates the hidden
states as hcoref_src

t , hmen_src
t , and hsent_src

t . The hidden states
to be used for the coreference resolution and mention
boundary outputs in this case are hcoref_ tgt

i and hmen_ tgt
i ,

respectively, based on the output hidden state ri of the
word-level encoder. To determine the sentence classifica-
tion, our model compares the hidden state hsent_ tg t

i to the
hidden states rsj of the sentence-level encoder.

hcoref_src
t ¼ eluðFFNNðcoref_srcÞðhtÞÞ, ð8Þ

hcoref_ tg t
i ¼ eluðFFNNðcoref_ tgtÞðriÞÞ, ð9Þ

hmen_src
t ¼ eluðFFNNðmen_srcÞðhtÞÞ, ð10Þ

hmen_ tg t
i ¼ eluðFFNNðmen_ tg tÞðriÞÞ, ð11Þ

hsent_src
t ¼ eluðFFNNðsent_srcÞðhtÞÞ, ð12Þ

hsent_ tgt
j ¼ eluðFFNNðsent_ tgtÞðrsj ÞÞ: ð13Þ

We use the deep biaffine score to output the corefer-
ence resolution, mention boundary, and sentence classifi-
cation when using the attention with the following
equations:

scoreft,i ¼h > coref_ tg t
i Uhcoref_src

t þw > hcoref_src
t , ð14Þ

smen
t,i ¼h >men_ tgt

i Uhmen_src
t þw > hmen_src

t , ð15Þ

ssentt,j ¼h > sent_ tgt
j Uhsent_src

t þw > hsent_src
t : ð16Þ

Loss Function for MTL
We use MTL, which learns both word- and sentence-level
classification, to use sentence-level contextual informa-
tion when performing coreference resolution. The out-
puts of our model are coreference resolution, mention
detection, and sentence classification, for which three

losses αLcoref , βLmen, and γLsent, respectively, are calcu-
lated and summed.

Lcoref ¼�
Xn

i

ycorefi log ŷcorefi , ð17Þ

Lmen ¼�
Xn

i

ymen
i log ŷmen

i , ð18Þ

Lsent ¼�
Xl

j

ysentj log ŷsentj : ð19Þ

Equation (20) calculates the final loss for the MTL by
adding the cross-entropy loss [30]. Here, α,β, and γ are
hyperparameters for performing optimization.

L¼ αLcoref þβLmenþ γLsent: ð20Þ

4 | EXPERIMENTS

4.1 | Datasets and measurements

In this study, we use a coreference resolution dataset [31]
from the ETRI quiz domain, which consists of Janghak-
quiz and wiseQA. The document statistics for the ETRI
datasets is presented in Table 1. We use the CoNLL F1
averaged MUC, B3, and CEAFϕ4

according to the official
CoNLL-2012 evaluation script.2 However, because the
script is suitable for English, we evaluate the coreference
resolution using only the head of the mention.

TABL E 1 Dataset statistics of ETRI quiz domain for Korean

coreference resolution

Training Development Test

Document 2819 645 571

Sentence 8299 1086 1167

Word 126720 12834 14334

Mention 30923 1978 2431

Entity 10416 799 931

2https://conll.cemantix.org/2012/software.html
3https://github.com/google-research/bert

98 PARK

https://conll.cemantix.org/2012/software.html
https://github.com/google-research/bert


4.2 | PLM for Korean

We use BERT and ELECTRA as encoders to construct
coreference resolution models with Ptr-net.

BERT consists of a bidirectional Transformer encoder
with several layers. We use KorBERT, distributed by
ETRI, as the baseline model and multilingual BERT3

released by Google for the comparison experiment. Multi-
lingual BERT uses a model4 that ports TensorFlow to
PyTorch from Hugging Face. The hyperparameters of
KorBERT are the same as those of the base model of Dev-
lin and others [24]. KorBERT is trained by Wikipedia and
news data from the web, totaling 23.5 G. KorBERT gener-
ates a BPE word vocabulary by combining morphemes
and POS tags and then performs morphological analysis
on the training data. The dictionary consists of 30 349
BPE tokens.

We use an ETRI language analyzer, which is available
from AIOpen, for the morpheme analysis. The language
analyzer is a tool for Korean NLP.

Moreover, we use the Korean ELECTRA model,
namely KoELECTRA.5 KoELECTRA is pre-learned with
14 G of Korean text (96 M sentences, 2.6 B tokens). KoE-
LECTRA uses WordPiece the vocabulary created in the
EnlipleAI. PLM.6

4.3 | Implementations

Hyperparameter tuning is performed on the proposed
model. The optimized hyperparameters of the model are

as follows: The RNN type uses SRU, with the dropout set
to 0.1, the number of hidden layer stacks set to 2, and the
number of hidden layer dimensions and feature embed-
ding dimensions set to 400 and 100, respectively. The
number of dimensions of the biaffine score function is set
to 50. The learning rate is set to 5�10�5 because the PLM
is fine-tuned. The learning algorithm uses Adam [35],
with a weight decay of 1�10�2. We fine-tune all models
on the ETRI Korean data for 70 epochs with a batch size
of 10 for each GPU, and we limit the maximum length of
the input sequence to 430 when using KorBERT and
440 when using KoELECTRA. The ETRI language ana-
lyzer is used to obtain results such as POS tagging, NER,
and dependency parsing, which we then use as features.

5 | RESULTS

5.1 | Overall performance

In Table 2, we compare the proposed model to previous
systems for Korean coreference resolution, such as the
rule-based model [11], end-to-end neural model (e2e-
coref) [3], and higher-order model (c2f-coref) [4]. Fur-
thermore, we compare previous studies that used the
same dataset, such as bert-coref [32], fast-coref [33], and
simple-coref [34].

The fast-coref and simple-coref in the fifth and seventh
rows of Table 2 are the results of testing with a single
model in the same environment. The fast-coref w/ KD in
the sixth row is the result of performing knowledge distil-
lation (KD) using the ensemble proposed in Park and
others [33], and the simple-coref w/ aug [34] in the eighth
row is the result of training after dividing the document
into two sentences and performing augmentation (aug).

4https://github.com/huggingface/transformers
5https://github.com/monologg/KoELECTRA
6https://github.com/enlipleai/kor_pretrain_LM

TAB L E 2 Experimental results on a test set of Korean data from ETRI wiseQA

MUC B3 CEAFϕ4 CoNLL
Model Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Avg. F1

rule-based [11] 52.0 45.1 48.3 51.6 45.4 48.3 53.8 51.9 52.9 49.8

e2e-coref [3] 66.9 55.2 60.5 64.5 53.1 58.2 66.1 53.9 59.4 59.4

c2f-coref [4] 68.3 56.4 61.8 59.0 53.4 59.0 66.4 54.4 59.8 60.2

bert-coref [32] 71.7 65.0 68.2 69.3 63.0 66.0 72.2 62.4 66.9 67.0

fast-coref [33] 67.3 67.3 67.3 64.8 65.3 65.1 69.5 63.5 66.3 66.2

fast-coref w/ KD [33] 68.0 68.2 68.1 65.6 66.0 65.8 71.1 62.9 66.7 66.9

simple-coref [34] 66.4 65.5 65.9 63.3 64.6 64.0 63.8 64.6 64.2 64.7

simple-coref w/ aug. [34] 70.7 67.4 69.0 68.5 64.8 66.6 72.1 63.3 67.4 67.7

Our model 68.4 66.8 67.6 66.1 64.4 65.3 70.3 63.1 66.5 66.5

Note: The final column (CoNLL Avg. F1) is the main evaluation metric, which is calculated by averaging the F1 of MUC, B3, and CEAFϕ4
. We calculate the

coreference resolution score based on the head of the mentions because Korean is the head-final language.
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As a result of the experiment, we achieve a 66.5%
CoNLL F1 score that is higher than the recent studies
fast-coref and simple-coref in the same environment of a
single model. In particular, our model’s CoNLL F1 score
is 1.8 higher, although the word-level coreference point-
ing method of simple-coref is similar to the proposed
method. Our model also outperforms the e2e- and c2f-
coref models, which both use only word-level informa-
tion. Because sentence-level context information can be
melted into the encoder during training, it can be seen
that the coreference resolution is useful when the task of
finding the position of the sentence, including the ante-
cedent for the current candidate, and the coreference res-
olution is performed with MTL. The proposed method, in
contrast, performs similarly to Joshi and others [32],
which performed well in the English model, but its time
complexity [32] is Oðn4Þ. The time complexity is high
compared to our model as Oðn2Þ.

6 | ANALYSIS

We optimize the model’s hyperparameter as proposed in
the development set of the ETRI coreference resolution.
We conduct various analyses, including a comparison of
the PLM and training algorithms, ratio loss optimization,
and ablation based on the optimized hyperparameters.

6.1 | Hyperparameter tuning

Hyperparameter tuning is carried out for the number of
dimensions of the feature embedding, the number of
dimensions of the hidden layer, the number of dimen-
sions of the deep biaffine score function, the RNN type,
and the number of stacks of the RNN hidden layer. We
set the number of dimensions to 50, 100, 200, 400, 800,
and 1600, respectively, to identify the hyperparameters
that result in the best performance. The initial hyperpara-
meters of our model are as follows: The number of
dimensions of the feature embedding is set to 1600, the
number of dimensions of the SRU hidden layer is set to
800, and the number of dimensions of the biaffine score
function is set to 50. We use a two-layer SRU for the ini-
tial RNN type.

6.1.1 | Optimization of feature embedding
dimension size

We optimize the number of dimensions of the feature
embedding in the development set, as shown in Table 3.
According to the experimental results, when the number

of dimensions of the feature embedding is 100, CoNLL
F1 performs best at 69.85%, and when the number of
dimensions is 400, F1 yields a value of 69.72%. We set the
number of dimensions of the feature embedding to
100 and then proceed with the hyperparameter tuning.

6.1.2 | Optimization of SRU Hidden Layer
Dimension Size

As indicated in Table 4, we also optimize the number of
hidden layer dimensions of the SRU. Here, when the
dimension size of the hidden layer is 400, CoNLL F1 is
70.16%, which is 0.31% better than the initial value of
100.

6.1.3 | Optimization of deep biaffine score
function dimension size

The dimension size optimization for the biaffine score
function is shown in Table 5. The biaffine score function
performs the best performance with CoNLL F1 of 70.16%

TABL E 3 Optimizing number of dimensions of feature

embedding on Korean ETRI development set (best performance in

bold)

MUC B3 CEAFϕ4

CoNLL

Dim. F1 F1 F1 Pre. Rec. Avg. F1

50 69.93 67.72 68.26 66.23 71.25 68.64

100 70.98 68.68 69.89 68.67 71.12 69.85

200 70.20 68.26 69.73 67.92 70.97 69.40

400 70.73 68.50 69.93 67.79 71.80 69.72

800 70.55 68.16 68.87 67.45 71.07 69.19

1600 70.66 68.18 69.74 68.33 70.85 69.53

Note: The number of dimensions is Dim.

TABL E 4 Optimization of SRU hidden layer dimension size

on Korean ETRI development set (best performance in bold)

MUC B3 CEAFϕ4

CoNLL

Dim. F1 F1 F1 Pre. Rec. Avg. F1

50 70.13 68.32 70.29 66.67 72.83 69.58

100 70.98 68.68 69.89 68.67 71.12 69.85

200 71.10 68.63 70.02 69.10 70.83 69.92

400 71.20 69.02 70.26 67.46 73.11 70.16

800 70.55 68.17 69.11 67.65 71.02 69.28

1600 70.99 68.56 69.42 67.77 71.71 69.66

Note: The number of dimensions is Dim.
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when the number of dimensions of the score function
hidden layer is 50, and in this case, the coreference reso-
lution tends to be more effective when the number of
dimensions of the hidden layer is smaller.

6.2 | Comparison of PLMs

Our model generates a word representation based on the
PLM output. BERT and ELECTRA have been released as
Korean PLMs, and we use KorBERT developed by ETRI,
Google’s multilingual BERT, and the open-source KoE-
LECTRA. The experimental results show that KorBERT
has the best performance and that multilingual BERT
has the lowest. KorBERT is pre-trained with POS tags
combined with morphemes, so it is expected that Korean
characteristics are well reflected, resulting in a good per-
formance. The reason KoELECTRA performs worse than
KorBERT is due to the difference in data size used for
pre-training and the absence of POS tags, as is the case
with multilingual BERT (Table 6).

6.3 | Ratio Optimization of Loss for MTL

We use MTL in conjunction with sentence classification
to solve the coreference resolution task, which is

processed in units of documents. The sentence classifica-
tion task, defined as an auxiliary task in our model out-
puts the position of the sentence containing the
antecedent as hierarchical attention to the sentence’s
contextual information. When performing MTL, the loss
of each task is calculated and added together to produce
a single value. The ratio to reflect the loss for each task is
defined at this point, and we conduct experiments by
defining the ratio as shown in Table 7. The ratio corre-
sponds to the order of α,β, and γ used in (20). The experi-
mental results indicate that the best performance is
achieved when the ratio is 9:1:1.

6.4 | Ablation study

We propose a model that combines sentence-level atten-
tion and MTL to perform Korean coreference resolution.
An ablation study is conducted to determine whether the
proposed model is suitable for coreference resolution.
Experiments for each component as well as the features
are conducted for the ablation.

6.4.1 | Component ablation

Our model computes the results of word-level pointing
and is trained with MTL and sentence-level attention.
We not only calculate and output the sentence-level
attention immediately but also add the score to the word-
level attention score to explicitly reflect the sentence-level
contextual information when searching for antecedents.
In Table 8, the method as join-score adds the word- and
sentence-level attention scores together to output the
antecedent position. The experimental results show a
64.98% F1 score, which is lower than our model

TAB L E 5 Optimization of deep biaffine score function

dimension size on Korean ETRI development set (best performance

in bold)

MUC B3 CEAFϕ4

CoNLL

Dim. F1 F1 F1 Pre. Rec. Avg. F1

50 71.20 69.02 70.26 67.46 73.11 70.16

100 70.47 68.09 69.66 68.53 70.35 69.41

200 70.82 68.76 70.28 67.08 73.11 69.95

400 70.05 67.58 69.20 66.26 71.92 68.94

800 70.26 67.95 69.45 66.14 72.67 69.22

1600 69.58 67.56 69.01 69.55 67.93 68.72

Note: The number of dimensions is Dim.

TAB L E 6 Comparison of PLMs on Korean ETRI test set (best

performance in bold)

MUC B3 CEAFϕ4

CoNLL

PLM type F1 F1 F1 Pre. Rec.

Avg.

F1

KorBERT 67.34 65.15 66.25 67.04 65.54 66.25

M.L.BERT 64.39 62.23 63.37 61.95 64.84 63.33

KoELEC. 65.78 63.87 65.38 65.06 65.04 65.01

TABL E 7 Ratio optimization of loss for MTL on Korean ETRI

test set (best performance in bold)

MUC B3 CEAFϕ4

CoNLL

Ratio F1 F1 F1 Pre. Rec.
Avg.
F1

6:1:3 66.12 64.06 65.11 65.78 64.52 65.10

6:3:1 66.15 63.88 65.1 66.73 63.53 65.04

6:2:2 66.58 64.55 65.41 68.02 63.28 65.51

7:1:2 66.7 64.02 64.36 67.74 62.65 65.03

7:2:1 66.51 64.36 65.56 65.49 65.54 65.48

8:1:1 64.93 63.05 64.36 65.10 63.19 64.11

9:1:1 67.34 65.15 66.25 67.04 65.54 66.25

10:1:1 66.39 64.54 66.10 66.84 64.58 65.68
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performance. When the sentence-level module, as s-mod-
ule, is removed from our model, a difference of 1.47%
from the performance of 64.78% for F1 is observed.
Accordingly, it is considered that the method of calculat-
ing the sentence-level attention in the decoder and train-
ing the output result with MTL is effective.

Feature Ablation
We use five features: morpheme boundary, word
boundary, dependency parsing, NER, and head dis-
tance. We use feature ablation to observe the extent to
which each feature affects our model. The NER feature
in Table 9 has a performance decrease of less than 1%
to 65.29% for F1, and the dependency parsing and
morpheme boundary exhibit slight performance differ-
ences of 1.14% and 1.19%, respectively. The head dis-
tance feature has a value of 64.61% for F1, indicating
a degradation of 1.64%, demonstrating that the dis-
tance feature is meaningful when modeling coreference
resolution. Finally, the word boundary feature had a
significant performance difference of 3.21%. This is
because the word boundary feature replaces the mean-
ing information of the word that is lost when the
input word is tokenized and divided into subwords.

6.5 | Quality analysis

Our model is hierarchical and was built using corefer-
ence resolution and MTL training. The candidate input

to the model computes the sentence level score and out-
puts the result. The sentence classification score for each
of the given candidates is shown in Figure 2.

The entities, which are ground truth, solved corefer-
ence in the document are entity 1: { (Tacoma),
(Tacoma)}, entity 2: { (cause), (phenomena), (that),
(phenomenon), (what)}, entity 3: { (bridge), (bridge)}.
At this time, the model correctly outputs all of entity
2, 3 except for entity 1.

According to Figure 2, we can see that the words in
the coreference relationship are highly scored among the
given candidates because the position of the sentence
contains the coreferent target. The tokenized (frequency)
is the (number) of token indices 18 and 24, and the token
is used as the model input’s representative token for the
model input. The (number)s all refer to the same term
but to different things.

Each (number) in this case, is weighted with a sen-
tence score of [CLS] tokens (no coreference resolution is
present in the sentence) and Sent 1.

The two candidate (number) mentions are semanti-
cally distinct, and since [CLS] is not coreferenced, the
candidate’s sentence classification score is calculated as a
higher score for [CLS].

Accordingly, the model appears to have prevented
(number) from being classified as the same entity, and
demonstrating the usefulness of the method modeled in a
hierarchical structure is useful in resolving coreferences.

However, the model failed to perform cross-reference
resolution for (Tacoma) ((Ta) corresponding to token
indices 1 and 8 in the example is input to the model as a
representative token), and even in sentence classification,
[CLS] token misclassified as.

7 | CONCLUSIONS

We created a model that uses head-final characteristics to
resolve Korean coreferences. We used hierarchical atten-
tion to reflect the sentence context and performed sen-
tence classification for improved understanding of the
contextual information of documents composed of

TAB L E 8 Component ablation study on Korean ETRI test set

(best performance in bold)

MUC B3 CEAFϕ4

CoNLL

Model F1 F1 F1 Pre. Rec.

Avg.

F1

Our model 67.34 65.15 66.25 67.04 65.54 66.25

+ join-score 65.65 63.93 65.36 64.62 65.39 64.98

� s-module 66.06 63.77 64.51 68.14 61.85 64.78

TAB L E 9 Feature ablation study on Korean ETRI test set (best

performance in bold)

Feature CoNLL Avg. F1 Δ
Our model 66.25

– NER 65.29 �0.96

– dependency parsing 65.11 �1.14

– morpheme boundary 65.06 �1.19

– head distance 64.61 �1.64

– word boundary 63.04 �3.21

F I GURE 2 Sentence score visualization. The tokens of the

candidates are on the x axis, and the sentence indices are on the y

axis. Each token has an index written in front of it, with the

English and pronunciation written beneath it
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multiple sentences because coreference resolution is pro-
cessed in units of documents. We used MTL to train the
coreference resolution and sentence classification tasks
simultaneously, and then conducted various experiments.
Furthermore, the model performance was improved
using PLMs like BERT and ELECTRA that were pre-
trained on large-capacity data with the Transformer. Our
model achieved a CoNLL F1 of 66.5% on the ETRI test
dataset for coreference resolution. The proposed method
outperformed the other methods studied.

However, we do have some limitations. In Korean,
coreference resolution task still lacks data. This is because
the domain of the data we used was limited to QA, it is
difficult to apply to various domains. Transformer-based
PLM has a deep layer and many attention operations, so
the model is heavy and the speed is slow. Also, Generally,
when the ensemble method is applied to a system, the
speed of the system is proportionally slowed down by the
number of models used when inference.

We intend to conduct research on these limitations in
the future. We will construct more datasets by hand-
crafting and translate the CoNLL dataset, and we will
improve the quality of the Korean coreference resolution
using variational inference to generalize ambiguous
words in our model. As PLMs have a large model param-
eter size, a significant amount of computation is required,
and the speed efficiency is poor. We intend to investigate
PLM knowledge distillation or develop a PLM with a
small architecture to address this issue.
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