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Abstract 
 

Regression-based image super resolution (SR) methods have shown great advantage in time 
consumption while maintaining similar or improved quality performance compared to other 
learning-based methods. In this paper, we propose a novel single image SR method based on 
hierarchical regression to further improve the quality performance. As an improvement to other 
regression-based methods, we introduce a hierarchical scheme into the process of learning multiple 
regressors. First, training samples are grouped into different clusters according to their geometry 
similarity, which generates the structure layer. Then in each cluster, a compact dictionary can be learned 
by Sparse Coding (SC) method and the training samples can be further grouped by dictionary atoms to 
form the detail layer. Last, a series of projection matrixes, which anchored to dictionary atoms, can be 
learned by linear regression. Experiment results show that hierarchical scheme can lead to regression 
that is more precise. Our method achieves superior high quality results compared with several 
state-of-the-art methods.  
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1. Introduction 

T he goal of image Super-Resolution (SR) is to reconstruct a high-resolution (HR) image 
from low-resolution (LR) image. In the past decades, many SR algorithms have been proposed 
and these algorithms can be mainly divided into the following three categories: 
interpolation-based methods, reconstruction-based methods and learning-based methods. 

Interpolation-based methods, such as polynomial-based interpolation methods and 
edge-directed interpolation methods [13,14,15], estimate unknown pixels through their known 
neighbors. These methods have low complexity, but tend to produce blurring and jaggy. 
Reconstruction-based methods often use prior knowledge such as gradient profile prior [16], 
total variation prior [17] and nonlocal self-similarity prior [18] to constrain the SR process. 
The prior knowledge is usually represented as some regularization terms. Although these 
reconstruction-based methods have made some improvement in edge preserving and artifacts 
suppressing, the parameters for the regularization terms are usually difficult to estimate and 
the SR performance degrades rapidly when the desired magnification factor is large. 

Learning-based methods are based on image patches which are extracted from original 
images with overlaps. The basic idea is that learning the mapping relationship between 
low-resolution (LR) image patches and corresponding high-resolution (HR) image patches as 
priori knowledge through example images. The priori knowledge can be used to estimate HR 
patches from corresponding input LR patches and then the result HR image can be constructed 
by positioning the estimated HR patches with their overlaps be averaged. The learning-based 
methods can be further divided into three categories: neighbor embedding (NE) methods, 
sparse coding (SC) methods and regression-based methods. 

Inspired by manifold learning methods, NE methods[1,2] assume that image patches from 
LR images and corresponding HR images respectively form a low-dimensional nonlinear 
manifold with similar local geometry to each other. That means each HR patch can be 
reconstructed from its neighbors with the same weights as in the LR domain provided that 
sufficient samples are available. The main downside of these methods is that along with the 
growing of the number of sample images to improve SR performance, the dictionary of 
sampled patches can quickly become too big to save and to compute. 

Sparse representation has gained great improvement in image processing and pattern 
recognition and many algorithms, such as pl -norm ( 0 1p< < ) [30], 2,1l -norm [29] and 

2, pl -norm ( 0 1p< ≤ ) [28] based methods, are proposed in recent years. Inspired by the 
perspective of sparse representation, SC methods [3,4,5] are applied in single image SR based 
on the assumption that LR patches and corresponding HR patches have same sparse 
representations if the dictionaries are jointly learned. As an extension, some SC methods [6,7] 
were proposed without the constraint of representation invariance assumption. Instead, the 
dictionaries are learned respectively with a mapping function learned simultaneously. The 
main disadvantage of SC methods is that the computational burden of dictionary learning and 
sparse coding is still too heavy for practical applications. 

In recent years, some regression-based methods are proposed to improve the computational 
efficiency of SR process while maintaining similar or even higher quality level. Clustering 
was used in [8,9,10] in training stage to split feature space into numerous subspaces and 
multiple effective mapping functions were learned for each subspace by linear regression. The 
anchored neighborhood regression (ANR) method [11] and its improved variant A+ [12] learn 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 5, May 2017                                          2541 

the mapping functions through 2l -norm based sparse representation, which is also known as 
collaborative representation. The computational complexity of reconstruction process for 
regression-based methods can be greatly reduced since the mapping functions can be trained 
offline.  

Motivated by previous regression-based methods [8,9,10,11,12], we propose a novel 
regression-based single image SR method which introduces the concept of hierarchy. First, 
training samples are grouped into different clusters according to their geometry similarity, 
which generates the structure layer. Then in each cluster, a compact dictionary can be learned 
by SC method and the training samples can be furtherly grouped by dictionary atoms to form 
detail layer.  Last, a series of projection matrixes which are anchored to dictionary atoms can 
be learned by linear regression. The procedure of clustering will bring about a more compact 
dictionary that makes the dictionary atoms more representative and so the image can be more 
accurately reconstructed. Experiment results demonstrate that hierarchical scheme can lead to 
more precise regression. Our method achieves superior high quality results compared with 
several state-of-the-art methods. 

The rest of the paper is organized as follows: related works are briefly introduced in Section 
2, our proposed method is presented in detail in Section 3, experiment results are reported in 
Section 4 and the conclusions are made in Section 5. 

2. Related Work 
In this section, we will briefly present the mainstream of SC methods and regression-based 
methods on which our proposed method is based. 

We define hI  and lI to be vectors of length hN  and lN pixels that respectively represent 
high- and low-resolution images. The relation between hI  and lI  can be formulated as 

    l hI DBI ν= +        (1) 
where B:  h hN NR R→ is a blur operator , D: h lN NR R→ is a decimation operator and ν  is an 
additive Gaussian Noise denoted as 2(0, )N Iν σ . The image SR problem is about how to 

find an estimation ĥI closest to hI  from given observed measurement lI . 
As a feasible solution to this problem, SC methods assume that each patch pair from HR and 

LR image can be sparsely represented respectively by HR and LR dictionaries using the same 
sparse coefficient when the dictionaries are jointly learned. In literature [3], the dictionaries 
are learned by simply randomly sampling raw patches from training images of similar 
statistical nature. As an improvement, Zeyde et al. [5] apply K-SVD [22] for LR dictionary 
training and obtain HR dictionary by solving the following problem 

   2min
h

h FD
X D A−      (2) 

where 
F

⋅  is the Frobenius norm, matrix X  contains HR training patches as its columns and 
matrix A  is constructed by sparse representation vectors, which are obtained while training 
the LR dictionary, as its columns. The solution of (2) can be given by 

 † 1( )T T
hD XA XA AA −= =        (3) 

In the testing phase, for each input LR patch, the sparse representation can be found through 
the following formulation 

 
0

2

2
min lD y
α

α l α− +     (4) 
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where lD denotes learned LR dictionary, y denotes LR patches or features extracted from LR 
image, α  denotes the sparse coefficient and λ  is a small positive constant used to balance 
sparsity of the solution and fidelity of the approximation to y . The optimization problem (4) 
is a NP-hard problem and the solution is difficult to approximate because of the 0l  –norm 
regularization term. However, the literatures [19,20,21] have revealed that l0 –norm constraint 
of problem (4) can be relaxed to 1l  –norm constraint while the solution is still content with the 
condition of sparsity. So problem (2) can be reformulated as 

1

2

2
min lD y
α

α l α− +        (5) 

and this problem can be solved in polynomial time. Given the optimal solution α̂  to (5), the 
corresponding HR patch can be reconstructed by the following formulation 

   ˆhx D α=         (6) 
where x denotes output HR patch and hD  denotes HR dictionary. 

The solving of problem (5) with 1l –norm regularization term is much computationally 
demanding, so further improvements were proposed in [11,12] by using Collaborative 
Representation [23] and the problem was formulated as 

   
2

2

2
min lN y
α

α l α− +       (7) 

where lN  denotes the neighborhood of input patch y  in LR space. The 2l -norm 
regularization term, which replaces the 1l  -norm regularization term in (5), is mainly used to 
make the least square solution stable and make sure the sparsity of the solution. The solution of 
(7) can be easily and analytically derived as 

    1ˆ ( )T T
l l lN N I N yα l −= +     (8) 

and the corresponding HR patch can be obtained by 
  1ˆˆ ( )T T

h h l l lx N N N N I N yα l −= = +     (9) 
where hN  is neighborhood in HR space corresponding to lN  . In [11,12], ( , )h lN N  pairs are 
anchored to dictionary atoms, that is, given an LR patch y , its neighborhoods are selected by 
the dictionary atom which is nearest to y . So the projection matrixes are independent of y  
and can be pre-calculated in training phase as 

   1(( ) ) ( ) , 1, 2,j j T j j T
j h l l lP N N N I N j Ml −= + = ⋅⋅⋅      (10) 

where ( , )h lN N  is neighborhood pair anchored to the j -th atom and M is the dictionary size. 
Then in testing phase, input LR patch y  can be directly projected to HR space via jP y  just 
after selecting the proper projection matrix by comparing the distance between y and each 
dictionary atom and this can be much faster than previous learning-based methods. In [11], the 
neighborhood pairs anchored to dictionary atoms are represented by their k nearest neighbors 
in the dictionary, which makes the size of neighborhood be limited by the dictionary size. 
Instead, [12] represents each neighborhood straightly from full training material, similar to [8], 
and obtains improved quality.  
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3. Proposed Method 
In this section, we propose a novel regression-based single image SR method, which 
implement a hierarchical structure via clustering and sparse representation to learn a series of 
projection matrixes more precisely for fast single image SR. To be specific, we split image 
patches which are extracted from training image set into numerous clusters, followed by 
jointly learning sparse dictionaries in each cluster domain. Then a series of projection matrixes, 
which are anchored to dictionary atoms, are learned for image SR. More details will be 
described in following discussion. 

3.1 Clustering and Learning Sub-dictionaries 
In this step, we first cluster training image patches into different groups according to their 
geometry similarity since it has been revealed that patches with similar patterns will bring 
about a more compact dictionary and so the image can be more accurately reconstructed [24]. 
Before clustering, we need extract patches from training image set. As in [5], we operate with 
image patches in feature space for robustness rather than straightly using raw patches. To 
obtain desired patches, we firstly carry out some preprocessing on full training images. Let  

{ }/ 1

INi
l h i

I
=

 denote LR/HR training image set and  { }
1

INi
B i

I
=

denote upscaling result of { }
1

INi
l i

I
=

 

using bicubic interpolation algorithm ( IN  is the number of all training images). Then we 
remove low frequency redundancies from HR image by 

      , 1, 2, ,i i i
M h B II I I i N= − =                             (11) 

so as to focus on edge and texture content which conveys more semantic information for 
human vision. For the same reason, we aim to extract high frequency details of LR image 
using 

              , 1, 2, , , 1, 2,3, 4
j

i i
f j B II f I i N j= ∗ = =                              (12) 

where ∗  denotes convolution operation,  1f  and 2f  represent one-order gradient filters in the 
horizontal and vertical directions, 3f  and 4f  represent two-order gradient filters in the 

horizontal and vertical directions, 
1 4
,...i i

f fI I  respectively represent the result image filtered by 

1 4,...f f .  

Then we extract LR and HR patches from preprocessed images. Let { } 1

N
i i

x
=

 denotes HR 

patches and { } 1

N
i i

y
=

 denotes LR patches in feature space ( N  is number of all patches 

extracted from LR/HR images). HR patches { } 1

N
i i

x
=

 are vectors of length hn  obtained by 

vectorising image patches of h hn n×  pixels which are extracted from { }
1

INi
M i

I
=

. For each 

HR patch ( 1,2, , )ix i N=  , four LR patches  { }1 2 3 4, , ,i i i ip p p p  with the same size can be 

extracted from ( 1,2,3,4)
j

i
fI j =  at the same location. After that, the corresponding LR patch 

iy can be obtained from merging these four patches into one patch followed by a 
dimensionality reduction operation using Principal Component Analysis (PCA) algorithm to 
reduce computational burden since a large number of redundant information exists in merged 
patches. The length of iy  is supposed to be ln . 
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Image patch pairs { } 1
, N

i i i
x y

=
 have been extracted from training images after the procedures 

above. Then we use k-means clustering algorithm on { } 1

N
i i

y
=

 to split these patches into a fixed 
number of clusters. Here, we use Euclidean Distance as distance metric in k-means algorithm 
since it is simple and effective in our application. After that, the number of patches in some 
clusters are obviously less than others. The clusters with too less patches will result in 
overfitting after dictionary learning process and so lead to inaccurate regression. To overcome 
this problem, we merge these clusters with their nearest neighboring clusters.The initial 

clusters are compressed to K clusters with K centroids are recomputed. Let { }
1

Kk

k
c

=
 denote K  

centroids of these clusters and { }
k

k
i i

Y y
∈Ω

=  is the LR patches assigned to the k -th cluster, 

where kΩ  is the index set of the k -th cluster from{ } 1

N
i i

y
=

. We split HR patches { } 1

N
i i

x
=

 into 

K clusters ( 1, 2, , )kX k K=   with the same indices as kY  and K  clusters of HR/LR patch 

pairs { }
1

,
Kk k

k
X Y

=
 are established. 

Once clustered image patch pairs are established, we come to the procedure of jointly learning 

sparse dictionaries in each { }
1

,
Kk k

k
X Y

=
 domain. Similar to [25], for the k -th 

cluster{ },k kX Y , the coupled HR/LR dictionaries can be obtained by solving the following 
optimization problem: 

   
2 2

, ,

1 1min
k k k
l h

k k k k k k
l hF FD D A

l h

D A Y D A X
n n

− + −  s.t. 
0

, 1, 2, ,k
i kd iα ≤ = Ω     (13) 

where { } { }, ,l hn M n Mk k
l hD D R R× ×∈   denotes coupled LR/HR dictionaries of the k -th cluster 

of training patches, k M NA R ×∈  denotes the matrix of coefficients, k
iα  is the i -th column 

vector of kA and d is the limit of sparsity. Here M is size of the dictionary and ⋅  represents 
cardinality of a set. The problem can be reformulated as 

              
2

,
min

k k

k k k

FD A
D A S−  s.t. 

0
, 1, 2, ,k

i kd iα ≤ = Ω                              (14) 

with 

                    

1 1

,
1 1

k k
l

l lk k

k k
h

h h

D Y
n n

D S
D X

n n

   
   
   = =
   
   
      

           (15) 

This is a general dictionary learning problem which can be solved using K-SVD algorithm and 
the coupled dictionaries { },k k

l hD D  can be obtained from kD . 

3.2 Learning Projection Matrixes 
In previous section above, we have established a series of clusters consisted of LR/HR patches 
with similar geometry structure and learned coupled dictionaries for each cluster. In this 
section, we aim to learn projection matrixes anchored to dictionary atoms in each cluster to 
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directly project LR patch to HR space in testing phase. We denote k
jP  as the projection matrix 

anchored to the j -th dictionary atom of the k -th cluster. First, we group the training patches 
in the k -th cluster into M subsets that the j -th ( )1,2, ,j M=   subset contains the patches 
to which the j -th dictionary atom has the highest correlation among the whole dictionary. Let 
the j -th subset is { } j

k

k
j i i

X x
∈Ω

=  and { } j
k

k
j i i

Y y
∈Ω

= where j
kΩ  denotes index set of the j -th 

subset of kY . Then the problem of finding a projection matrix k
jP  can be formulated as  

        
2

2
min , 1,2 , , 1, 2, ,

k
jj
k

k
i j i

P i

x P y k K j M
∈Ω

− = =∑            (16) 

This can be reformulated as 

                
2

min , 1,2 , , 1, 2, ,
k
j

k k k
j j j FP

X P Y k K j M− = =∑      (17) 

The solution of (17) can be given by 
                       † 1ˆ ( ) ( ) ( ( ) )k k k k k T k k T

j j j j j j jP X Y X Y Y Y −= =      (18) 

In this way, we can learn a K M×   matrix with ˆ ( 1, 2, , , 1, 2, , )k
jP k K j M= =  as its 

elements and the learning process can also be finished offline without increasing 
computational burden to testing phase. 

3.3 Reconstruction Process 

In training phase, we have established K training clusters with { }
1

Kk

k
c

=
 ,{ }

1
,

Kk k
l h k

D D
=

 as their 

centroids and sparse dictionaries and we have learned a K M×  matrix consisted of projection 
matrixes which are anchored to dictionary atoms. In testing phase, we first extract feature 
patches from given input LR image using the method described in section 3.1. After then, each 
LR feature patch can be located to a cluster centroid by comparing the distances between the 

patch and the centroids { }
1

Kk

k
c

=
 and it can be furtherly located to a dictionary atom by 

comparing the relevancy between 2l -normalized LR feature patch and the dictionary atoms. 

Then we can select a projection matrix k
jP  from the learned K M×  matrix with the located 

index and the corresponding HR patch can be obtained by directly multiplying the LR feature 
patch by k

jP .  
In this way, we can obtain all HR patches corresponding to LR feature patches. Then the HR 

image can be reconstructed by positioning these result HR patches at corresponding location 
with their overlaps be averaged. 

4. Experimental Results 
In this section, we carry out a set of experiments to evaluate performance of our proposed 
method. We compare our proposed method with Bicubic interpolation method and several 
state-of-the-art learning based SR methods such as NE+LLE [1], SCSR [25], the Zeyde’s 
method [5], ANR [11], A+ [12] and SRCNN [27]. The peak signal-to-noise ratio (PSNR) and 
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structural similarity (SSIM) [26] are used as main objective quality evaluation indexes for SR 
performance evaluation.  

4.1 Experiment Settings 
We select 16 images of representative scene as shown in Fig. 1 to carry out our SR 
experiments. The objective indexes for performance evaluation are computed in the luminance 
channel of original and reconstructed HR images. 
 

 
Fig. 1. Test 16 images. From left to right and top to down: coffee, sculpture, metal, hands, balls, bird, 

travelling, bedroom, boy, flower, indicator, cable stripe, model, car, boat. 
 

Our proposed method is trained with 91 images provided in [25]. The training images are 
converted into YCbCr color space and LR/HR training patches are extracted from luminance 
component Y since human visual system is much more sensitive to intensity changes than to 
color changes. The patch size is set to 9 9× , so the length of HR feature vectors 81hn = . The 
size of LR feature vectors is 4 81 324× =  and it is reduced to 30ln =  after using PCA 
algorithm. In the training phase, 800,000N =  LR/HR feature pairs are randomly extracted 
from multiple scales (12 scales) of training images.  

The number of clusters is important for performance of our proposed method. If the number 
is too small, the training patches in each cluster will have less structure similarity, and then the 
precision of regression will reduce. If the number is too large, the time consumption of 
locating to cluster centroid in testing phase will increase. To set clustering number properly, 
we train our method with different clustering numbers from 20 to 580 at intervals of 20. Then 
we do SR reconstructions over two testing images (indicator and travelling) and the results are 
shown in Fig. 2. The results show that when set clustering number between 1 and 200, 
reconstruction performance in terms of PSNR grows rapidly along with the increasing of 
clustering number. When clustering number increase to larger than 200, the performance 
remains stable with very little fluctuation. Here we set clustering number to 300 and the 
training patch pairs are clustered by k-means method. Then the number of clusters is 
compressed to 238K =  by merging the clusters with little patches (e.g. less than 3000 
patches) into their nearest neighboring clusters. For each cluster, a sparse dictionary is learned 
by K-SVD algorithm. The dictionary size is set to 1024M =  and the limit of sparsity is set to 

3d = . The magnification factor is set to 3s = . 
All the compared learning based methods are also trained with the same training dataset for 

a fair comparison. The source codes are obtained from the authors’ websites and the 
parameters are set according to the authors’ recommendation. 
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   (a)     (b)   

Fig. 2. Reconstruction performance in terms of PSNR with different clustering numbers. (a) the 
results over “indicator” (b) the results over “travelling”.  

4.2 Results and Analysis 
We compare our proposed method with other state-of-the-art methods in terms of PSNR and 
SSIM respectively in Table 1 and Table 2. Results show that our method obtains the best 
results for most of the testing images and achieves best results on average. The average PSNR 
gain of our proposed method over the second best method SRCNN [27] is 0.2588dB and the 
average SSIM gains of our proposed method on the second best method SRCNN [27] is 
0.0040. These quantitative results demonstrate that our proposed method not only obtains 
smaller reconstruction error but also preserves better structural details than the other methods. 
 

Table 1. Performance of 3×  magnification in terms of PSNR (dB) on testing images. Best results in bold. 
image Bicubic NE+LLE SCSR Zeyde ANR A+ SRCNN Proposed 
coffee 37.0438 38.5811 38.1036 38.3947 38.5564 39.4102 38.9855 39.6196 
sculpture 26.0318 27.0121 27.2202 27.0133 27.0556 27.8219 27.7880 27.9675 
metal 39.9263 42.7315 40.2590 42.8706 42.7453 43.7466 43.9355 44.0996 
hands 33.9495 34.6234 34.1238 34.8985 34.6943 35.8155 35.8796 36.0672 
balls 32.0054 33.8614 33.6078 33.9611 33.9514 35.0822 34.6007 35.2374 
bird 30.1967 31.1995 30.6348 31.2376 31.2210 31.2666 31.5551 31.5249 
travelling 32.1348 33.8787 33.3755 34.0614 33.9097 34.6904 34.6570 34.9488 
bedroom 33.9631 35.8294 34.5874 35.8776 35.8326 35.5937 35.8539 35.9551 
boy 39.1302 41.8170 40.0860 42.0290 41.9043 42.3609 42.3550 42.5935 
flower 39.1534 40.8519 39.3268 40.7429 40.9110 41.5750 41.6288 41.7196 
indicator 29.2828 31.5650 30.6459 32.0194 31.5942 33.2880 33.5718 33.6316 
cable 27.4625 29.5415 30.1281 29.5261 29.5705 31.6945 32.0629 32.1204 
stripe 27.8318 28.2772 28.3095 28.7943 28.3243 30.4701 30.2119 30.8951 
model 25.5363 26.5819 26.7202 27.0268 26.6057 28.8418 28.7531 29.0711 
car 28.3917 29.4651 29.3104 29.6262 29.4140 30.2529 30.0467 30.4222 
boat 26.5110 27.4641 27.1823 27.7153 27.5282 28.2400 28.2919 28.4440 
average 31.7845 33.3301 32.7263 33.4872 33.3637 34.3844 34.3861 34.6449 



2548                        Qiu et al.: Hierarchical Regression for Single Image Super Resolution via Clustering and Sparse Representation 

 
Table 2. Performance of 3×  magnification in terms of SSIM on testing images. Best results in bold. 

image Bicubic NE+LLE SCSR Zeyde ANR A+ SRCNN Proposed 
coffee 0.9591 0.9680 0.9614 0.9675 0.9684 0.9720 0.9679 0.9729 
sculpture 0.8504 0.8776 0.8783 0.8785 0.8781 0.8983 0.9033 0.9007 
metal 0.9869 0.9900 0.9793 0.9908 0.9905 0.9920 0.9924 0.9928 
hands 0.9222 0.9317 0.9147 0.9325 0.9325 0.9364 0.9293 0.9377 
balls 0.9175 0.9362 0.9269 0.9376 0.9368 0.9458 0.9445 0.9466 
bird 0.8282 0.8540 0.8389 0.8543 0.8550 0.8543 0.8585 0.8581 
travelling 0.9135 0.9348 0.9253 0.9360 0.9354 0.9421 0.9417 0.9438 
bedroom 0.9458 0.9597 0.9482 0.9607 0.9607 0.9600 0.9631 0.9615 
boy 0.9667 0.9757 0.9640 0.9764 0.9763 0.9775 0.9790 0.9782 
flower 0.9647 0.9723 0.9574 0.9722 0.9727 0.9741 0.9748 0.9747 
indicator 0.8976 0.9227 0.9069 0.9298 0.9221 0.9423 0.9432 0.9448 
cable 0.9071 0.9301 0.9325 0.9315 0.9284 0.9513 0.9536 0.9546 
stripe 0.7786 0.7866 0.7865 0.8170 0.7917 0.8645 0.8573 0.8749 
model 0.7962 0.8200 0.8081 0.8307 0.8197 0.8590 0.8493 0.8603 
car 0.8830 0.9041 0.8984 0.9078 0.9023 0.9194 0.9039 0.9218 
boat 0.8250 0.8483 0.8424 0.8545 0.8509 0.8659 0.8677 0.8692 
average 0.8964 0.9132 0.9043 0.9174 0.9138 0.9284 0.9268 0.9308 

 
To further demonstrate the effectiveness of our proposed method, we compare our visual 

results with other state-of-the-art methods with magnification factor s = 3 in Fig. 3, Fig. 4, Fig. 
5 and Fig. 6. We select these images based on the variety of the scenes including car (see Fig. 
2), balls (see Fig. 3), travelling (see Fig. 4) and indicator (see Fig. 5). The visual results show 
that the Bicubic interpolation produces the worst results with seriously blurring effects along 
the edges and over-smoothed textures. Although NE + LLE [1] can alleviate the blurring 
effects along the edges by partially reconstructing the high frequency components of the HR 
images, it still tends to produce ringing effects along edges by introducing inaccurate 
neighbors. SCSR [25], Zeyde’s method [5] also generates ringing effects and blurred results 
mainly because that learned dictionaries fail to capture the details from training patches. ANR 
[11] would achieve very fast SR but still generates some unpleasing artifacts in Fig. 4(f) and 
blurred edges in Fig. 5(f). A+ [12], SRCNN [27] suppresses ringing effects significantly, 
however, it also produces jaggy artifacts in Fig. 5(g), Fig. 6(g) and smoothing details in Fig. 
3(g), Fig. 4(g). As can be observed, our proposed method produces sharper edges without 
obvious ringing effects, less blurring effects, and finer textures with more details than other 
methods. 
 
 

   
(a)                                                  (b)                                              (c) 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 5, May 2017                                          2549 

  
(d)                                              (e)                                                 (f) 

   
(g)                                              (h)                                                  (i) 

Fig. 3. Visual comparisons with different SR results on car by using different methods (magnification 
factor s = 3) (zoom in for better view). (a) Original/PSNR. (b) Bicubic/28.3917. (c) NE + LLE/29.4651. 

(d) SCSR/29.3104. (e) Zeyde/29.6262. (f) ANR/29.4140. (g) A+/30.2529.  
(h) SRCNN/30.0467. (i) Proposed/30.4222. 

   
(a)                                                  (b)                                                      (c) 

   
(d)                                                   (e)                                                      (f) 

   
(g)                                                   (h)                                                     (i) 

Fig. 4. Visual comparisons with different SR results on balls by using different methods (magnification 
factor s = 3) (zoom in for better view). (a) Original/PSNR. (b) Bicubic/32.0054. (c) NE + LLE/33.8614. 

(d) SCSR/33.6078. (e) Zeyde/33.9611. (f) ANR/33.9514. (g) A+/35.0822. 
 (h) SRCNN/34.6007. (i) Proposed/35.2374. 
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(a)                                                      (b)                                                   (c) 

   
(d)                                                      (e)                                                    (f) 

   
(g)                                                        (h)                                                    (i) 

Fig. 5. Visual comparisons with different SR results on travelling by using different methods 
(magnification factor s = 3) (zoom in for better view). (a) Original/PSNR. (b) Bicubic/32.1348. 

 (c) NE + LLE/33.8787. (d) SCSR/33.3755. (e) Zeyde/34.0614. (f) ANR/33.9097. 
 (g) A+/34.6904. (h) SRCNN/34.6570. (i) Proposed/34.9488. 

 

   
(a)                                                    (b)                                                 (c) 

   
(d)                                                     (e)                                                 (f) 
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(g)                                                  (h)                                                     (i) 

Fig. 6. Visual comparisons with different SR results on indicator by using different methods 
(magnification factor s = 3) (zoom in for better view). (a) Original/PSNR. (b) Bicubic/29.2828.  

(c) NE + LLE/31.5650. (d) SCSR/30.6459. (e) Zeyde/32.0194. (f) ANR/31.5942. (g) A+/33.2880.  
(h) SRCNN/33.5718. (i) Proposed/33.6316. 

4.3 Running Time 
We analyze the computing complexity of our proposed method using big Ο  notation. As the 
hierarchical regression model can be trained offline, so we focus on analyzing the complexity 
of testing phase. It is simple to conclude that the cost for locating an LR patch to a cluster is 

( )lKnΟ , the cost for furtherly locating to final projection matrix is ( )lMnΟ and the cost for 
projecting an LR patch to corresponding HR patch ( )h ln nΟ . K, M, nh, nl respectively 
represent the number of clusters, dictionary size and the dimension of HR and LR patch. So the 
whole cost is ( ( ) )h lN K M n nΟ + + . N denotes the total number of patches extracted from 
original LR image. 

Table 3 shows the average running time of our proposed method and other state-of-the-art 
methods on 16 testing images. All the experiments are conducted on an Intel(R) Core(TM) 
i7-5600U @ 2.60 GHz CPU with 16 GB RAM under MATLAB R2013a programming 
environment. Results show that the running time of our proposed method is more than ANR 
[11] and A+ [12] mainly because that our proposed method increases an extra procedure of 
locating to cluster centroid after feature extraction. This is reasonable cost for quality 
improvement. Even so, our proposed method still consumes less time than the other 
learning-based methods while achieving state-of-the-art SR quality.  
 

Table 3. Average running time of different methods. 
Methods NE+LLE SCSR Zeyde ANR A+ SRCNN Proposed 
Times(s) 2.86 25.63 1.86 0.70 0.75 8.63 1.22 

5. Conclusion 
In this paper, a novel single image SR method based on hierarchical regression was proposed 
to further improve the performance of regression-based methods. The hierarchical scheme 
introduced here groups the training dataset into structure layer and detail layer, which leads to 
learning of more compact dictionaries and thus more precise regression. Bicubic interpolation 
method and 6 state-of-the-art learning based SR methods were compared with our proposed 
method in terms of PSNR and SSIM. The experimental results show that our proposed method 
have the best overall quality compared to other state-of-the-art methods at the cost that the 
running time increases compared to [11] and A+ [12], but still much faster than the other 
learning based methods. 
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