GENDISCAN study (Gene Discovery for Complex traits in Asian population of Northeast area) was designed to incorporate methodologies which enhance the power to identify genetic variations underlying complex disorders. Use of population isolates as the target population is a unique feather of this study. However, population isolates may have hidden inbreeding structures which can affect the validity of the study. To understand how this issue may affect results of GENDISCAN, we estimated inbreeding coefficients in two study populations in Mongolia. We analyzed the status of Hardy-Weinberg Equilibrium (HWE), polymorphism information contents (PIC), heterozygosity, allelic diversity, and inbreeding coefficients, using 317 and 1,044 STR (short tandem repeat) markers in Orkhontuul and Dashbalbar populations. HWE assumptions were generally met in most markers (88.6% and 94.2% respectively), and single marker PIC ranged between 0.2 and 0.9. Inbreeding coefficients were estimated to be 0.0023 and 0.0021, which are small enough to assure that conventional genetic analysis would work without any specific modification. We concluded that the population isolates used in GENDISCAN study would not present significant inflation of type I errors from inbreeding effects in its gene discovery analysis.
In general, Evoluationary Algorithm(EAs) are refered to as methods of population-based optimization. And EAs are considered as very efficient methods of optimal sytem design because they can provice much opportunity for obtaining the global optimal solution. This paper presents a co-evolution scheme of artifical neural networks, which has two different, still cooperatively working, populations, called as a host popuation and a parasite population, respectively. Using the conventional generatic algorithm the host population is evolved in the given environment, and the parastie population composed of schemata is evolved to find useful schema for the host population. the structure of artificial neural network is a diagonal recurrent neural netork which has self-feedback loops only in its hidden nodes. To find optimal neural networks we should take into account the structure of the neural network as well as the adaptive parameters, weight of neurons. So we use the genetic algorithm that searches the structure of the neural network by the co-evolution mechanism, and for the weights learning we adopted the evolutionary stategies. As a results of co-evolution we will find the optimal structure of the neural network in a short time with a small population. The validity and effectiveness of the proposed method are inspected by applying it to the stabilization and position control of the invered-pendulum system. And we will show that the result of co-evolution is better than that of the conventioal genetic algorithm.
With the ongoing rise of coronavirus disease 2019 (COVID-19) pandemic across the globe, interests in COVID-19 antibody testing, also known as a serology test has grown, as a way to measure how far the infection has spread in the population and to identify individuals who may be immune. Recently, many countries reported their population based antibody titer study results. South Korea recently reported their third antibody formation rate, where it divided the study between the general population and the young male youths in their early twenties. As previously stated, these simple point estimates may be misinterpreted without proper estimation of standard error and confidence intervals. In this article, we provide an updated 95% confidence intervals for COVID-19 antibody formation rate for the Korean population using asymptotic, exact and Bayesian statistical estimation methods. As before, we found that the Wald method gives the narrowest interval among all asymptotic methods whereas mid p-value gives the narrowest among all exact methods and Jeffrey's method gives the narrowest from Bayesian method. The most conservative 95% confidence interval estimation shows that as of 00:00 November 23, 2020, at least 69,524 people were infected but not confirmed. It also shows that more positive cases were found among the young male in their twenties (0.22%), three times that of the general public (0.051%). This thereby calls for the quarantine authorities' need to strengthen quarantine managements for the early twenties in order to find the hidden infected people in the population.
본 논문에서는 사용자 개개인에 최적화된 아바타를 생성하기 위해 대화형 진화연산(Interactive Genetic Algorithm, IGA)을 적용하는 방법을 제안하고 있다. 대화형 진화연산은 사용자의 선택을 적합도 평가에 사용하는 방법이기 때문에, 사용자의 개인적인 취향을 아바타 생성 과정에 반영할 수 있다. 본 연구에서는 기존의 대화형 진화연산이 가지고 있는 단점을 극복하기 위해 hidden population 기법과, simplified genotype 기법을 제안한다. 이러한 방법들은 단시간 내에 최적화된 결과물을 생성하도록 유도함으로써 IGA 시스템의 최대 문제점인 사용자의 피로도를 최소화한다 마지막으로, 제안하고 있는 알고리즘의 우수성을 증명하기 위해 사용자의 만족도나 신뢰도를 측정할 수 있는 독자적인 평가 방법을 소개하고 있다
본 연구에서는 30-40대 싱글여성의 의식주생활, 소비 및 여가 생활과 같은 일상생활에서의 의미를 분석하였다. 그 결과 자신, 관계, 생존, 미래 준비, 자유와 그 이면과 같이 5개의 대주제를 찾을 수 있었다. '자신'이라는 대주제에서는 오직 '나'를 위해, '나'를 완성시키고 싶은, '나'만의 스타일이라는 3개의 중주제를 찾았다. '관계'라는 대주제에서는 가족과 더불어서, 다른 사람들과 더불어서 라는 2개의 중주제를 찾았고, 가족과 더불어서 라는 중주제에서는 '가족'을 위해, 아직은 '가족'의 그늘에서 라는 2개의 소주제를 찾았다. 다른 사람들과 더불어서 라는 중주제에서는 함께 하는 즐거움, 싱글들끼리의 편안함, 세상과의 소통 이라는 3개의 소주제를 찾았다. '생존'이라는 대주제에서는 건강, 안전, 혼자 살아내는 연습 이라는 3개의 중주제를 찾았고, '미래 준비'라는 대주제에서는 착한 소비, 노후대비 저축, 노후대비 여가 라는 3개의 중주제를, '자유와 그 이면'이라는 대주제에서는 홀로라서 자유, 자유의 그 이면들 이라는 2개의 중주제를 찾았고, 홀로라서 자유라는 중주제에서는 가족으로부터 벗어난 자유로움, 홀로이기에 나에 대한 보상 이라는 2개의 소주제를, 자유의 그 이면들이라는 중주제에서는 혼자라서 '불안' '싫음' '두려움', 외로움과 쓸쓸함 극복하기 라는 2개의 소주제를 찾았다. 이와 같이 주제를 찾는 과정을 통하여 싱글 여성들의 일상생활에서의 의미를 알아낼 수 있었고, 이러한 의미를 종합해 봄으로써 인구교육에서의 시사점을 도출해 내었다.
Submillimeter Galaxies (SMGs) are high-redshift galaxies undergone extremely intense starbursts. Their UV radiation is heavily extinguished by dust and is re-radiated in the far-IR and submillimeter. They are thought to be progenitors of present-day giant elliptical galaxies and can be tracers of the highest density environment at high redshift. However, because of the low angular resolution of existing single-dish submillimeter telescopes, the progress in understanding the SMG population has been remarkably slow. In this talk, I will outline the outstanding issues in this field, and introduce our Submillimeter Array interferometric studies of SMGs. I will also discuss possible new research that will be enabled by next-generation instruments such as ALMA and LMT.
Jia, Wei;Hua, Qingyi;Zhang, Minjun;Chen, Rui;Ji, Xiang;Wang, Bo
Journal of Information Processing Systems
/
제15권4호
/
pp.986-1016
/
2019
Mobile user interface pattern (MUIP) is a kind of structured representation of interaction design knowledge. Several studies have suggested that MUIPs are a proven solution for recurring mobile interface design problems. To facilitate MUIP selection, an effective clustering method is required to discover hidden knowledge of pattern data set. In this paper, we employ the semi-supervised kernel fuzzy c-means clustering (SSKFCM) method to cluster MUIP data. In order to improve the performance of clustering, clustering parameters are optimized by utilizing the global optimization capability of particle swarm optimization (PSO) algorithm. Since the PSO algorithm is easily trapped in local optima, a novel PSO algorithm is presented in this paper. It combines an improved intuitionistic fuzzy entropy measure and a new population search strategy to enhance the population search capability and accelerate the convergence speed. Experimental results show the effectiveness and superiority of the proposed clustering method.
HMM (hidden Markov model)을 이용한 음성인식은 현재 가장 널리 쓰여지고 있는 방법으로, 이 중 CDHMM (continuous observation density HMM)은 상태에서 관측심볼확률을 연속확률밀도를 사용하여 표현한다. 본 논문에서는 가우스 혼합밀도함수를 사용하는 CDHMM의 상태천이확률과, 관측심볼확률을 표현하기 위한 인자인 평균벡터, 공분산 행렬, 가지하중값을 유전자 알고리듬을 사용하여 최적화하는 방법을 제안하였다. 유전자 알고리듬은 매개변수 최적화문제에 대하여 자연의 진화원리를 모방한 알고리듬으로, 염색체 형태로 표현된 개체군 (population) 중에서 환경에 대한 적합도 (fitness)가 높은 개체가 높은 확률로 살아남아 재생 (reproduction)하게 되며, 교배 (crossover)와 돌연변이 (mutation) 연산 후에 다음 세대 개체군을 형성하게 되고, 이러한 과정을 반복하면서 최적의 개체를 구하게 된다. 본 논문에서는 상태천이확률, 평균벡터, 공분산행렬, 가지하중값을 부동소수점수 (floating point number)의 유전자형으로 표현하여 유전자 알고리듬을 수행하였다. 유전자 알고리듬은 복잡한 탐색공간에서 최적의 해를 찾는데 효과적으로 적용되었다.
Using SOHO particle and EUV detection and radio spectrograms from both ground-based and spaceborne instruments, we have studied the first phase of major solar energetic particle (SEP) events associated with wide and fast coronal mass ejections (CMEs) centered at different solar longitudes. Observations support the idea that acceleration of SEPs starts in the helium-rich plasma of the eruption's core well behind the CME leading edge, in association with coronal shocks and magnetic reconnection caused by the CME liftoff; and those "coronal" components dominate during the first ~1.5 hour of the SEP event, not yet being hidden by the CME-bow shock in solar wind. At magnetic connection to the eruption's periphery, onset of SEP emission is delayed for a time of the lateral expansion that is visualized by global coronal (EIT) wave. The first, "coronal" phase of SEP acceleration is followed by a second phase associated with CME-driven shock wave in solar wind, which accelerates high-energy ions from a helium-poor particle population until the interplanetary shock slows down to below 1000 km/s. Based on these and other SOHO observations, we discuss what findings can be expected from STEREO in the SOHO era perspective.
Though box compression strength (BCS) is commonly used as a performance criterion for shipping containers, estimating BCS remains a challenge. In this study, artificial neural networks (ANN) are implemented as a new tool, with a focus on building up ANN architectures for BCS estimation. An Artificial Neural Network (ANN) model can be constructed by adjusting four modeling factors: hidden neuron numbers, epochs, number of modeling cycles, and number of data points. The four factors interact with each other to influence model accuracy and can be optimized by minimizing model's Mean Squared Error (MSE). Using both data from the literature and "synthetic" data based on the McKee equation, we find that model estimation accuracy remains limited due to the uncertainty in both the input parameters and the ANN process itself. The population size to build an ANN model has been identified based on different data sets. This study provides a methodology guide for future research exploring the applicability of ANN to address problems and answer questions in the corrugated industry.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.