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Abstract 
Mobile user interface pattern (MUIP) is a kind of structured representation of interaction design knowledge. 
Several studies have suggested that MUIPs are a proven solution for recurring mobile interface design problems. 
To facilitate MUIP selection, an effective clustering method is required to discover hidden knowledge of pattern 
data set. In this paper, we employ the semi-supervised kernel fuzzy c-means clustering (SSKFCM) method to 
cluster MUIP data. In order to improve the performance of clustering, clustering parameters are optimized by 
utilizing the global optimization capability of particle swarm optimization (PSO) algorithm. Since the PSO 
algorithm is easily trapped in local optima, a novel PSO algorithm is presented in this paper. It combines an 
improved intuitionistic fuzzy entropy measure and a new population search strategy to enhance the population 
search capability and accelerate the convergence speed. Experimental results show the effectiveness and 
superiority of the proposed clustering method. 
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1. Introduction 

A mobile user interface pattern (MUIP) is a proven solution to a common recurring mobile interface 
development problem. Meaningful design information such as design problem, functional goal and 
solution, included in the MUIP, can increase reusability, efficiency, quality and modularization in 
interface development. It is more useful for developers to design high usability interface with short time 
and share their knowledge with others [1-3]. In recent years, many attempts have been made toward the 
pattern selection. Gomes et al. [4] proposed a case-based reasoning (CBR) method for selecting patterns. 
In [5], the ontology-based technique was employed to represent knowledge on patterns and a set of 
question-answer pairs was used for reasoning suitable patterns. Hasheminejad and Jalili [6] presented a 
pattern selection method based on the text classification approach. But to our knowledge, little work has 
been made for the MUIP data analysis. In fact, data analysis plays a significant role in determining the 
applicability of a MUIP, because it provides useful information for pattern selection. Especially when 
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there is a large supply of labeled data, unlabeled data and overlapping functional goals between MUIPs, 
data analysis can effectively extract hidden knowledge from the MUIP data set. Thus an effective data 
analysis method is needed that facilitates the MUIP selection in the design phase. 

Semi-supervised clustering, as an important data analysis method, is widely used in many applications 
to solve real-world problems. It uses a few labeled samples to guide the clustering process. Various 
methods have been proposed in the semi-supervised clustering area. However, some clustering methods 
such as density-based spatial clustering of applications with noise (DBSCAN) [7] and graphics processing 
unit accelerated DBSCAN (GDBSCAN) [8] fail to discover overlapping clusters because they belong to 
non-overlapping clustering. Some other clustering methods such as balanced iterative reducing and 
clustering using hierarchies (BIRCH) [9] and clustering algorithm based on randomized search 
(CLARANS) [10] only work well for convex or spherical clusters of uniform size. 

 

 
Fig. 1. Several overview plus data patterns. 

 

 
Fig. 2. MUIP clustering result. 

 
In general, most MUIPs contain multiple sub functional goals that belong to different clusters. For 

instance, Fig. 1 shows several overview plus data patterns that use charts to summarize the most 
important information, and a table below with the detailed data. Two sub-functional goals are included 
in the overview plus data pattern. One is to browse the details of data and the other is to provide visual 
data. When information browsing and visual information presentation are selected as cluster centers, we 
can see from Fig. 2 that cluster 1 and cluster 2 cannot be reasonably distinguished due to overlapping area 
between clusters. Furthermore, researches on the functional goals of MUIPs show that there are a large 
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number of non-linear relationships between MUIPs [11]. In this case, MUIP data are non-linear and the 
distribution of MUIP data is irregular in space. Due to the above reasons, MUIP data are not linearly 
separable in input space and it is difficult for the above clustering methods to identify the arbitrary shaped 
clusters. 

Recently, kernel fuzzy c-means (KFCM) clustering [12] has been received much attention in the semi-
supervised clustering area [13]. The kernel function is utilized to perform a non-linear mapping from the 
original feature space to a high dimensional feature space. Due to the idea of kernel substitution, semi-
supervised kernel fuzzy c-means (SSKFCM) clustering can identify non-spherical clusters and has a 
powerful ability to deal with non-linear data. In addition, fuzzy logic is used in SSKFCM clustering to 
determine the association of a data point to a cluster with different membership degree. Thus, if a MUIP 
simultaneously lies in more than one cluster, SSKFCM clustering can detect overlapping clusters. With 
the advantages above, the application of SSKFCM clustering to MUIP clustering seems natural and 
appropriate. 

However, SSKFCM clustering is sensitive to the kernel parameter, the initial cluster centers and the 
number of clusters. Due to these defects, it is easily trapped in local minima. Many researchers treat this 
problem as an optimization problem and metaheuristic optimization algorithms such as genetic 
algorithm (GA) [14], simulated annealing (SA) [15], and particle swarm optimization (PSO) [16] are used 
to improve the clustering performance. Compared with other optimization algorithms, the PSO 
algorithm is more simple and easy to implement. Therefore, we pay more attention to the PSO algorithm 
in this study. In recent years, many PSO-based clustering methods have been proposed. Yu et al. [17] 
used the PSO algorithm to obtain the global optimal number of clusters. Mekhmoukh and Mokrani [18] 
improved the performance of clustering by utilizing the PSO algorithm to initialize the cluster centers. 
Liu et al. [19] presented an improved KFCM clustering method where, in the original KFCM clustering 
method, they employed the PSO algorithm for kernel parameter optimization. 

The major drawback of PSO algorithm is that it easily falls into local optima and has slow convergence 
speed. Many variant PSO algorithms have been proposed in order to improve the performance of the 
PSO algorithm. Sedki and Ouazar [20] proposed a hybrid algorithm based on differential evolution (DE) 

[21] and PSO algorithm (DEPSO) which integrated DE and PSO algorithm at specified interval of 
iterations. In [22], a hybrid of chaotic optimization algorithm [23] and PSO algorithm (CPSO) was 
proposed to enhance the global optimal solution of the PSO algorithm. In [24], the authors proposed a 
PSO algorithm combined cellular automata (CA) [25] with PSO algorithm (CAPSO) to improve local 
search ability and global optimization ability. Each particle was considered as a cell and updated its 
current status with neighbors’ states in the algorithm. Wang et al. [26] proposed an intuitionistic fuzzy 
entropy-based PSO algorithm (EPSO) which utilized intuitionistic fuzzy sets (IFSs) to describe particles 
and attempted to take advantage of intuitionistic fuzzy entropy [27] as an index to measure the state of 
the particle swarm. Their work had shown some preliminary results in improving the performance of the 
PSO algorithm through the entropy of IFSs. However, existing improved PSO algorithms still have some 
shortcomings in terms of measuring and maintaining the diversity of the population. 

Inspired by the above discussions, we propose an improved SSKFCM clustering method for MUIP 
clustering. Firstly, a hybrid PSO algorithm combining intuitionistic fuzzy entropy, opposition-based 
learning (OL) [28], DE and PSO algorithm (EODPSO) is presented that aims to optimize clustering 
parameters. This work is motivated by the variant PSO algorithms. In EODPSO algorithm, an improved 
intuitionistic fuzzy entropy measure and a new population search strategy are proposed to obtain better 
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optimization result. Then, we propose a MUIP clustering method and use the EODPSO algorithm to 
optimize the clustering parameters. Finally, experiments using MUIP data set are reported and the results 
are compared to other relevant clustering methods. 

In summary, the contributions of our work are summarized as follows: 
(1) In order to reasonably measure the diversity of particle swarm, we present an improved entropy 

measure of IFSs that based on geometric interpretation of IFSs. 
(2) We propose an improved PSO algorithm to enhance the exploration of the PSO algorithm. 

Specifically, the improved entropy measure is used to measure the diversity of particle swarm and 
a new population search strategy is used to strengthen the global convergence. 

(3) We propose a SSKFCM clustering method for MUIP clustering where kernel parameter, initialize 
clustering centers and number of clusters are optimized through the improved PSO algorithm. 

The remainder of this paper is organized as follows: Section 2 briefly introduces the SSKFCM clustering 
method and the PSO algorithm. Section 3 presents the details of the proposed method. We use numerical 
experiments to verify the performance of the proposed method in Section 4. Finally, a conclusion and 
future works are given in Section 5. 

 
 

2. Preliminaries 

2.1 Semi-Supervised Kernel Fuzzy C-Means Clustering 
 

Fuzzy c-means (FCM) clustering [29] is a typical clustering method which allows points to belong to 
two or more clusters with different membership values, ranging from . Let , where 

 is a data set of size n in D-dimensional space. FCM clustering partitions this data set into  
subsets. The aim of the FCM clustering is to minimize the objective function which is the generalized 
form of the least-squared errors function: 

 

 (1) 

 

where  denotes the Euclidean distance between  and , m is the fuzzy controlling parameter 

and is generally chosen as 2,  is the membership value of  with the respect to cluster  and  
must satisfy the following conditions: 

(1) The membership value ranges between zero and one, that is, .  

(2) The sum of the membership values for each data point must be one, that is, .  

(3) The sum of the all membership values in a cluster must be smaller than the number of data n, that 

is, .  

In KFCM clustering, a kernel function is used to transfer the original feature space to a kernel-induced 
distance, and the Euclidean distance of FCM is replaced with kernel-induced distance. The KFCM 
clustering minimizes the following objective: 
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 (2) 

where  is a non-linear function mapping  from the input space Z to a new space F with higher or 
even infinite dimensions. 

The kernel-induced distance is calculated as: 
 

 (3) 
 

where  is the kernel function which is defined as the inner product in the new space F with: 

, for , in input space Z. 

We can see that kernel function can be directly constructed in original input space without knowing 
the concrete form of . Among the various kernel functions, Gaussian kernel is a typical kernel function 
which is expressed as follows: 

 (4) 

where  is the parameter of Gaussian kernel.  
For Gaussian kernel, we have . Thus, it is obvious that objective function of KFCM could 

be defined as: 

 (5) 

By optimizing Eq. (5), the fuzzy partition matrix and cluster centers can be obtained as follows: 

 (6) 

 (7) 

By integrating supervised and unsupervised information into the objective function of KFCM, 
SSKFCM clustering method expands KFCM clustering into semi-supervised domain. This method takes 
advantage of supervised information, such as labeled data or pair-wise constraints, to guide the clustering 
process. The labeled and unlabeled data can be denoted in a whole matrix form as follows: 

 (8) 

where the superscript  and  are the labeled and unlabeled data respectively,  and  are the 
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 (9) 

where the value of   is known before and typically is set to 1 if the data  is labeled with class j, and 

0 otherwise. 
The initial of set of cluster centers is obtained from  as follows: 

 (10)

Then, the membership  in  is calculated: 

 (11)

Finally, the cluster centers are written: 

 (12)

 
2.2 Particle Swarm Optimization 
 

The aim of PSO algorithm is to solve optimization problems and avoid trapping into local minima. In 
PSO algorithm, a set of potential solutions is represented as particles that fly in D-dimensional space. For 
a search problem in a D-dimensional space,  is the best position that the ith particle has ever visited, 

 is the best position that the whole population have visited. The velocity of a particle  is updated: 

 (13)

where  and  are the position and the velocity of particle  at iteration , respectively,  is 

inertia weight. It represents the inheritance of the next flight velocity from the current flight velocity.  

and  are acceleration coefficients. They represent particle’s self-learning capability and capability of 

learning from excellent companion respectively. In general, .  and  are two independently 

uniformly distributed random variables with range .  

The position of a particle  is updated as follows: 

 (14)

Entropy of an IFS describes the fuzziness degree of the IFS. Atanassov [30] generalized the concept of 
fuzzy sets and defined the IFS as follows: 
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DEFINITION 1: An IFS  in a finite set  is given by: 

 (15)

where  is the membership function of  and is the non-membership 

function of , with the condition , . The numbers  and  

represent the membership degree and non-membership degree of the element  to the set , respectively. 
 

DEFINITION 2: For each IFS  in , if 

 (16)

then  is called intuitionistic index of  in . It is a hesitancy degree of  to , and  

for . 
 

DEFINITION 3: The complementary set  of  is defined as: 

 (17)

Wang et al. [26] utilized IFS to describe particles and taken the entropy of the IFS as the measurement 
of the state of particle swarm and the mutation parameter. Its main idea is that there is an effective radius 

 for the best position  of each particle  at iteration . If a particle is in the range of , then 

it gather near , otherwise, it does not gather near  and is considered as an isolated point. The 

related definition of entropy of IFSs in PSO algorithm is defined as follows: 
 

DEFINITION 4: At iteration , the best position  of each particle is selected as the aggregation point. 

 is the distance function which calculates the distance from each particle to aggregation point . 

The effective radius of  is , where  is random value in range . 
 

DEFINITION 5: Let  is a particle swarm in a finite set . At iteration , if , 

then the particle  belongs to the effective radius of  and . If , then the particle 

 is an isolated point and . Then membership degree , intuitionistic index 

 and non-membership degree  , where  is the 

membership degree of  at iteration .  is the intuitionistic index of an isolated point.  

 is the non-membership degree of  at iteration . 
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view. Zeng and Li [31] discussed the relationship between similarity measure and entropy of IFSs. Their 
study showed that similarity measures and entropies of IFSs can be transformed to each other. Based on 
this point of view, they defined the entropy measure as: 

 (18)

Li et al. [32] investigated the systematic transformation of the entropy into the similarity measure for 
IFSs and discussed the sufficient conditions of this transformation. Then, the entropy measure was 
defined as: 

 (19)

Verma and Sharma [33] proposed an exponential entropy of IFSs based on the concept of exponential 
fuzzy entropy. The entropy measure was given by: 

 (20)

in which . 

In [27], an entropy measure for IFSs based on geometric interpretation was shown as: 

 (21)

In [34], an entropy measure based on a trigonometric function was given by: 
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defined as: 
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entropy measure based on geometric interpretation to overcome the disadvantages of existing entropy 
measures. The proposed entropy measure takes fully into account many sides, including intuitionistic 
index, membership degree, non-membership degree and relationships among them. 

A geometric interpretation of an IFS is shown in Fig. 3, each element of an IFS X is mapped into a point 
in an equilateral triangle  in their opinion. The triangle is an orthogonal projection of the 
triangle . Segment  represents a fuzzy set described by two parameters  and . All points 
which are above the segment  have a hesitancy margin greater than 0. The most undefined is point 

. When the hesitancy margin for  is equal to 1, it is difficult to judge if this point belongs or does 
not belong to the set. When the distance from  to  is equal to the distance to , the fuzziness 
degree for  is equal to 100%. 

 

 
Fig. 3. A 3-dimensional representation of an IFS. 

 
In Fig. 3, we draw a perpendicular line from point  on a line segment , two line intersect at 

point , and a perpendicular bisector  is obtained. Obviously,  equals  on any 

point of , and triangle  is complementary with triangle . It is worth noticing that 
 is higher with higher  and is lower with higher  or . From Fig. 3, we can safely 

come to the following conclusions about entropy of IFSs : 

(1) , iff ,  for ; 

(2) , if ,  or ,  for ; 

(3)  is only equal to  on ; 

(4)  becomes higher with the point of  approaches . 
 
Based on the existing studies and conclusions above [37,38], we give an axiomatic definition of entropy 

measure of IFSs as follows: 
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(1)  iff  is a crisp set; 

(2)  iff  for ; 

(3)  if  is less fuzzy than , i.e., when , 

 or , or when 

,  for ; 

(4) . 

Through above analysis, we develop an effective entropy measure as follows: 

 (25)

THEOREM 1: Let  be a finite universe of discourse. A real function : 

 defined by the Eq. (25) is an entropy measure of the IFS. 
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. Thus, we have . 

Hence, we complete the proof of Theorem 1. 
 

In the following, we demonstrate the performance of  by the comparison of  and the 

existing intuitionistic fuzzy entropy measures. 

Let us calculate the entropy for IFSs: , , 

, , , 

, , ,  and 

. According to the geometric interpretation of IFSs, it is clear that the fuzziness 

degrees of these IFSs are different. Table 1 presents the calculation results of different entropy measures. 
 

Table 1. Comparison of the different entropy measures 

Entropy measure           

 1 1 0.8333 0.8889 1 1 0.875 0.8571 0.5 0.5 

 1 1 0.9 0.9 1 1 0.9 0.9 0.6 0.5 

 1 1 0.9495 0.9495 1 1 0.9495 0.9495 0.768 0.6875 

 1 1 0.9905 0.9905 1 1 0.9905 0.9905 0.8463 0.7588 

1 1 0.9898 0.9957 1 1 0.9945 0.9927 0.8662 0.8662 

1 0.5 0.5 0.74 0.58 0.52 0.62 0.54 0.44 0.5 

1 1 1 0.9999 1 1 0.9999 0.9999 0.9995 0.998 

 1 0.5 0.4525 0.6735 0.6 0.5368 0.5694 0.4974 0.2952 0.3125 

 
From Table 1, we find that ,  and  cannot distinguish the fuzziness degrees 

of  , , and . Moreover, their calculation results show that the fuzziness degrees of , 

and are equal to 1, which is obviously unreasonable. The reason is that they omit intuitionistic index 
and only consider the difference between membership degree and non-membership degree. Although 

, ,  and  consider the intuitionistic index, they do not take full 
account of the relationship between known information and unknown information. For this reason, their 
calculation results do not clearly show the differences between these IFSs in terms of fuzziness and 
intuitionism.  

By comparing the calculation results as listed in Table 1, the proposed entropy measure  can 
definitely distinguish the fuzziness degrees of these IFSs. Further, for , ,  and , we can see that 
differences between the membership degrees and the non-membership degrees are the same. In this case, 
the greater value of , the fuzzier the corresponding element . Thus uncertain information of  

is the biggest, uncertain information of  is more than that of , and uncertain information of  is 
the least. The calculation results of the proposed entropy measure show that , 
as we would expect. Hence, the proposed entropy measure is not only mathematically correct but also 
reasonable. 

     
       

2

1

2 21
3

n
A i A i A i

i A i A i A i A i

x x x

n x x x x

  
   

  

       =cE A E A

 E A  E A

 1 ,0,0i iA x x X   2 ,0.5,0.5i iA x x X  3A 

 ,0.5,0.4i ix x X  4 ,0.2,0.1i iA x x X   5 ,0.3,0.3i iA x x X  6 ,0.4,0.4i iA x x

X  7 ,0.3,0.2i iA x x X   8 ,0.4,0.3i iA x x X   9 ,0.2,0.6i iA x x X  10A 

 ,0,0.5i ix x X

1A 2A 3A 4A 5A 6A 7A 8A 9A 10A

 WangE A

 ZengE A

 LiE A

 VermaE A

 WeiE A

 GaoE A

 LiuE A

 E A

 ZengE A  LiE A  VermaE A

3A 4A 7A 8A 2A 5A

6A

 WangE A  W eiE A  G aoE A  LiuE A

 E A

3A 4A 7A 8A

 A ix iA 4A

7A 8A 3A

       3 8 7 4E A E A E A E A  



Wei Jia, Qingyi Hua, Minjun Zhang, Rui Chen, Xiang Ji, and Bo Wang 
 

 

J Inf Process Syst, Vol.15, No.4, pp.986~1016, August 2019 | 997 

3.2 Improved Particle Swarm Optimization Algorithm 
 

In this study, EODPSO is proposed in this study to optimize clustering parameters. To improve the 
performance of the PSO algorithm, we use a hybrid strategy to avoid local minima and accelerate 
convergence speed. The hybrid strategy contains the following three aspects.  

(1) Chaotic opposition-based learning (COL) [39] is used to obtain a better initial population.  
(2) CA is combined with PSO algorithm to enhance local search ability. 
(3) We present a new population search strategy that combines OL and DE to extend the performance 

of global search. 
 

3.2.1 Generation of initial population 
 

A reasonable initial population plays a vital role in helping to avoid premature local optimization and 
accelerate convergence speed. COL is a population initialization method which combines chaotic systems 
and OL to obtain initial population. Thus COL is employed in EODPSO algorithm to generate an initial 
population. 

In [39], the authors used the Sine map in their chaotic system. Nevertheless, the Sine map has two 
problems. Firstly, its chaotic range is limited to a finite interval. Secondly, the data distribution of output 
chaotic sequences is non-uniform. To avoid these problems, we use an improved 1-dimensional chaotic 
system [40], called Tent-Sine system, in COL to obtain better result. The Tent-Sine system uses the Tent 
and Sine maps as seed maps. The Tent-Sine system is defined as follows: 

 (26)

where  is the output chaotic sequence,  is a parameter with range of , is the modulo 

operation,  is the iteration number, is Tent map,  is Sine map. 

At iteration , the opposite search of particle  is carried out as follows: 

 (27)

where  is current position of particle ,  is the result of reverse search of particle , 

 and  are lower and upper bounds for the dimension , respectively. 

COL algorithm consists of two main parts. In the first part, we use Tent-Sine system to generate an 
initial population. In the second part, we use OL to generate an opposite population. Then these two 
populations are amalgamated and a new initial population is generated. 

Suppose all particles fly in D-dimensional space. The steps of COL are described by Algorithm 1. 
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Algorithm 1. COL algorithm 
Input:    Set the population size  and the maximum number of iterations . 
Output: Initial population. 
1.    for  to  do 
2.      for  to  do 

3.        Randomly generate the value of ; 

4.        for  to  do 

5.          ; 
6.        end for 
7.        ; 

8.      end for 
9.    end for 
10.  for  to  do 
11.     for  to  do 

12.       ; 
13.     end for 
14.  end for 

15.  Select  fittest individuals from the set of  as current population. 

 
3.2.2 Enhancement of local search ability 
 

CA is a space and time-discrete dynamical system that evolves according to a set of local rules and 
neighbor cells. It is composed of five basic components, which are cell, cell space, cell state, neighborhood, 
and transition rule. As is shown in Fig. 4, Moore model is one of the well-known neighborhoods in 2-
dimensional CA. The black cell is the center one, and those gray ones are its neighbors. At a discrete time 
step, the update of a cell state obtains by taking into account the states of cells in its local neighborhood. 
All cells communicate and change states synchronously. 

 

 
Fig. 4. Moore model. 

 
Current studies have shown that CA is a powerful method to enhance the local search ability of the 

PSO algorithm [24]. In EODPSO algorithm, CA is integrated in particle update to avoid local minima, 
and each particle is defined as a single cell and is distributed in 2-dimensional space. The CA model for 
EODPSO algorithm is described as follows: 

(1) Cell: each particle is defined as a single cell; 
(2) Cell space: the set of all cells; 
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(3) Cell state: cell state is defined as the particle’s position. The state of cell  is defined as 
; 

(4) Neighborhood: the neighborhood of particle  is defined as ,  where 

 is the number of neighbors; 

(5) Transition rule: .  

 
3.2.3 Population search strategy 
 

In order to accurately judge when population search strategy is implemented, we use the entropy of 
IFSs as population diversity index and utilize the proposed entropy measure to achieve the state of particle 
swarm in the EODPSO algorithm. According to Theorem 1, the proposed intuitionistic fuzzy entropy 
measure in PSO algorithm is defined as follows: 

 

DEFINITION 7: Let  is a particle swarm in a finite set . At iteration , the 

intuitionistic fuzzy entropy measure in PSO algorithm is defined as: 

 (28)

where  is in range . 

It is known from Definition 7 that when the entropy value equals 0, all particles converge to one point. 
When entropy value equals 1, all particles reach the maximum dispersion. In addition, β is used as a 
threshold to decide whether the population search strategy is implemented. When the entropy value is 
smaller than β, it means that EODPSO algorithm falls into local optima. In this case, we use the proposed 
population search strategy to enhance global search ability.  

DE algorithm is an evolutionary algorithm based on real number coding and the evolution of 
population. It guides the population towards the vicinity of the global optimum by repeating cycles of 
mutation, crossover and selection. DE algorithm starts with a population of NP D-dimensional search 
variable vectors. During the iteration , for each individual  

, a mutation vector  is computed by using the following mutation operator: 

 (29)

where ,  and  are random unequal integers within the set . F is the 

mutation control parameter. 
The trial vector  is generated by using the following crossover operation: 

 (30)

where , ,  and  are jth parameter for the ith trial, mutant and vectors. 

 is a uniformly distributed random number within . CR is a cross control parameter and is 
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usually selected from within . It controls the diversity of population and helps the DE algorithm to 

escape from local optima.  is a randomly chosen index within . It ensures that  gets 

at least one parameter from . 

Moreover, as discussed in Section 3.2.1, OL is also an effective algorithm for searching population. The 
main idea of OL is to consider an estimate and its corresponding opposite estimate simultaneously. Our 
new population search strategy makes use of the merits of DE and OL algorithm. It not only helps the 
PSO algorithm to escape from local optima but also accelerates the convergence speed of the PSO 
algorithm. In the new population search strategy, OL and DE are applied to obtain a new population. 
Specifically, we firstly use OL to generate an opposite population, and then we use mutation and crossover 
to generate a mutation population. Finally, we select S fittest particles from the current population, 
opposite population and mutation population as a new population. 

 
3.2.4 EODPSO algorithm 
 

In EODPSO algorithm, each particle is defined as cell and updates its current status with neighbors’ 
states. Based on the evolution mechanism of CA, COL is used to generate a reasonable initial population. 
Then, at each iteration, each particle’s velocity and position are updated by using the evolution 
mechanism of CA. When the entropy value of the population is smaller than threshold β, then OL and 
DE are applied to generate an opposite population and a mutation population, respectively. A new 
population is obtained by selecting S fittest particles from the current population, opposite population 
and mutation population. At the next iteration, the new population is considered as an initial population. 

To accelerate convergence speed and improve optimization quality effectively, inertia weight  is 
calculated by using a linear decreasing way.  is calculated as follows: 

 (31)

where  and   represent the maximum and minimum of  respectively,  is the current 

iterative number and  is the maximum number of iterations. 

EODPSO algorithm is shown as follows: 
 

Algorithm 2. EODPSO algorithm 

Input:   Set the parameters including , , , , , the maximum number of iterations  and 
the number of neighbors . 
Output: . 

1.    Randomly initialize  and ; 

2.    Generate the initial particles with positions  by using Algorithm 1 and random velocities  in 
the cell space; 

3.    For each initial particle, set  and ; 
4.    Evaluate each initial particle; 
5.    Identify the best position ; 
6.    ; 
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7.    while  

8.      Calculate  by using Equation (31); 
9.      for  to  do  
10.       for  to  do 

11.        if fitness <fitness  

12.           Update ; 
13.         end if 
14.        end for 

15.        

; 

16.       ; 

17.       ; 

18.       if fitness <fitness  

19.         Update ; 
20.       end if 

21.       if fitness <fitness  

22.         Update ; 
23.       end if 
24.     end for 
25.     Calculate the entropy value of population according Equation (28); 
26.     if  
27.       Generate opposite population  by using Equation (27); 
28.       Generate mutation population  by using Equation (29) and (30); 
29.       Generate a new population according to current population,  and ; 
30.       Update  and ;  
31.     end if 
32.     ; 
33.   end while 

 

 

3.3 Mobile User Interface Pattern Clustering 
 

In this section, we propose a SSKFCM clustering method to cluster the MUIP data. In the framework 
of MUIP clustering, EODPSO algorithm is used to optimize clustering parameters. 

First of all, EODPSO algorithm is exploited to optimize the kernel parameter σ of Gaussian kernel 
function. During the process of optimizing parameter σ, a fitness function is defined to assess the 
generated solutions. One of the clustering evaluation metric, Davies-Bouldin index (DBI) [41], is used in 
this fitness function to measure the influence of σ on clustering quality. The lower value of DBI signifies 
better clustering result. The fitness function is defined as follows: 

 (32)

where  is DBI. 
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The DBI is defined as follows: 

 (33)

where  is the number of clusters. maximum of . 

 (34)

where  and  are the scatter with the ith center and jth center, respectively.  is the distance 

between the ith cluster center and the jth cluster center.  

We can see that the smaller the value of , the greater the fitness value  and the better value of 

parameter.  
Then, considering that the cluster centers and the number of clusters also influence the clustering effect 

directly, the EODPSO algorithm is reused to initialize the cluster centers and DBI is used as a judgment 
index to determine the optimal number of clusters. In [42], they discussed the optimal number of clusters. 

The results of their study show that the optimal number of clusters is in range , where  is the 

size of the data set . 

A fitness function is defined to assess the generated cluster centers during the initialization phase. The 
definition of the fitness function is expressed below: 

 (35)

where  is the objective function of KFCM, as shown in Eq. (5). 

It has been expressed clearly that the smaller the value of , the better the effect of the clustering 

and the greater the fitness value of . 

Fig. 5 illustrates the framework of MUIP clustering method. The MUIP clustering includes two stages. 
In the first stage, initial cluster centers are generated by using EODPSO algorithm. In the second stage, 
the kernel parameter is optimized by utilizing EODPSO algorithm. Then, the fuzzy partition matrix and 
cluster centers are updated. If the value of DBI is greater than maximum number of clusters , 
clustering method is stopped and the fuzzy partition matrix and cluster centers are output. Otherwise, 
clustering method continues to optimize the kernel parameter and update the fuzzy partition matrix and 
cluster centers. 

 

 
Fig. 5. Framework of MUIP clustering. 
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Algorithm 3 shows the specific steps of MUIP clustering. MUIP clustering consists of two loops. The 
inner loop is used to optimize the parameter σ and update and . The outer loop is used to 

determine the fuzzy partition matrix and cluster centers. At each iteration of the inner loop, the clustering 
method first optimizes the parameter σ by using EODPSO algorithm and fitness function . Then, 

the fuzzy partition matrix  and cluster centers  are updated. At each iteration of the outer loop, the 

value of DBI is calculated and used to determine the number of clusters. 
 

Algorithm 3. MUIP clustering 

Input:    Set the parameters including , , , , the maximum number of iterations  and the 

maximum number of clusters . 
Output:  and . 
1.    Generate the initial cluster centers by using Algorithm 2 and Equation (35); 
2.    ; 
3.    for  to  do 

4.      while  

5.        Optimize the parameter  by using Algorithm 2 and Equation (32); 
6.        Update  by using Equation (11); 

7.        Update  by using Equation (12); 
8.        ; 
9.      end while  
10.    Calculate  by using Equation (33) and (34); 
11.   end for 
12.   Identify the minimum , and then select its corresponding  and  as clustering result. 

 
 

4. Experiments and Analysis  

4.1 Data Collection  
 

In general, developers select MUIPs according to functional goals. Therefore, we exploit the MUIP 
clustering method to cluster MUIPs based on the functional goals. Our data set is constructed by 
collecting 5,397 MUIPs from [43,44] and seven MUIPs websites (http://www.mobile-patterns.com/, 
http://inspired-ui.com/, http://ui-patterns.com/, http://pttrns.com/, https://www.cocoacontrols.com/, 
http://ios-patterns.com/, http://mobiledesign.com/). To facilitate testing, we define 51 types of functional 
goals based on our previous study on MUIP data collection [11]. 

 
4.2 Evaluation Metrics 
 

In our experiments, DBI, accuracy [45], adjusted rand index (ARI) [46] and normalized mutual 
information (NMI) [47] are employed to evaluate the performance of the experimented methods. DBI is 
used to measure the within-cluster scatter and the inter-cluster separation. Since ARI is not sensitive to 
the number of clusters, it is used to compare two partitions with different cluster numbers. Accuracy and 
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NMI are used to measure the quality and efficiency of the cluster method, respectively. Note that the 
greater values of accuracy, ARI and NMI signify better clustering result. DBI is defined above and the 
other three metrics are defined as follows: 

 (36)

where  is the total number of data,  and  are the true class label and the obtained cluster label, 

 is a function that equals 1 if  and equals 0 otherwise. Function  is a permutation 

function that maps each cluster label to a class label. The optimal matching can be found with Hungarian 
algorithm [48]. 

 (37)

where  is the total number of data,  is the number of data that belong to cluster  and cluster , 

 denotes the number of data that belong to cluster ,  denotes the number of data that belong to 

cluster .  is the number of clusters that are obtained after running a clustering method.  is the 

number of clusters that come from priori partition. 

 (38)

where  is the number of clusters, is the total number of data,  denotes the number of data in 

cluster  as well as in cluster ,  and  denote the number of data in cluster  and cluster , 

respectively. 
 

4.3 Parameters Setting 
 

Before applying our method to MUIP data, several parameters need to be set. The parameters of our 
method are set as: , , , , , , , 

, , , , . Considering that the change of entropy value β affects 
the performance of the EODPSO algorithm and further affects the clustering result of the proposed 
clustering method, we evaluate the critical β by using the above evaluation metrics. We increase β 
gradually from 0.1 to 0.9 and the proposed clustering method is run 20 times for each value of β. We 
randomly select 10% data as labeled data and the rest as unlabeled data each time. Fig. 6 reports the mean 
values and standard deviations of the four evaluation metrics for different values of β. It should be noted 
that “Mean” indicates the mean value and “Std” indicates the standard deviation in this paper. It is clear 
that these four evaluation metrics change significantly when changing the value of β from 0.1 to 0.7, but 
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they change very slightly when changing the value of β from 0.7 to 0.9. At the same time, we can see from 
the results that values of Accuracy, ARI and NMI are close to their maximums and values of DBI is close 
to its minimum after β=0.7. This means when β<0.7, EODPSO algorithm falls into local optima. In this 
case, it requires a population search strategy to jump out of local optima. On the contrary, when β ≥0.7, 
EODPSO algorithm does not fall into local optima. In this case, the population diversity is not much 
affected by the increasing value of β. All these results indicate that the critical value of β is 0.7. Therefore, 
we set β=0.7 in our clustering method. 

 

 
Fig. 6. The effect of parameter β on the proposed clustering method. 
 

 
4.4 Results and Comparisons 
 

In this paper, the experimental studies focus on the clustering effect and the convergence of the 
proposed MUIP clustering method. In order to make it evident to show the performance of EODPSO 
clustering method, other relevant clustering methods are used as comparisons. Specifically, DBSCAN, 
GDBSCAN, BIRCH and CLARANS are used in semi-supervised clustering method to cluster MUIP data. 
Additionally, GA, SA, PSO, and four variant PSO algorithms mentioned in this paper, namely DEPSO, 
CPSO, CAPSO, and EPSO, are used to replace EODPSO algorithm in the framework of MUIP clustering. 
Then the seven alternative SSKFCM clustering methods are applied to cluster MUIP data. 

The first experiment is to compare the clustering effect of those clustering methods in different ratios 
of labeled data. All methods are run 20 times independently on MUIP data. Fig. 7 shows the mean values 
of four evaluation metrics of the clustering method accompanied with standard deviations. The mean 
value indicates the clustering effect of the methods and the standard deviation indicates the stability of 
the methods. Mean values of four evaluation metrics are clearly evident that PSO-based SSKFCM 
clustering methods usually outperform other semi-supervised clustering methods. The reasons are as 
follows. Firstly, density-based spatial clustering methods cannot discover overlapping clusters. Secondly, 
BIRCH and CLARANS clustering methods only work well for convex or spherical clusters. Thirdly, GA 
and CA easily fall into local optima and have slow convergence speed. Moreover, it can be seen that 
EODPSO clustering method surpasses all other PSO-based clustering methods. Compared to other PSO 
algorithms, EODPSO algorithm has better global search ability because it utilizes a hybrid strategy to 
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avoid local minima and accelerate convergence speed. Thus EODPSO clustering method achieves better 
results than other PSO-based clustering methods.  

 

(a) (b)

(c) (d)
Fig. 7. Comparison of all clustering methods under different ratio of labeled data: (a) DBI, (b) accuracy, 
(c) ARI, and (d) NMI. 

 
It is worth noting that the performances of all methods are less dependent on labeled data as the ratio 

of labeled data increases. The reason is that when the number of labeled data reaches a certain ratio, the 
whole MUIP data space can be represented better and the influence of labeled data on clustering effect 
decreases gradually. 

Tables 2–7 and Fig. 8 show more details on the performance of the clustering methods. The best results 
are highlighted in bold in tables. As can be seen from Tables 2–5, the overall standard deviations of four 
evaluation metrics of EODPSO clustering method are lower than that of other methods. It means that 
EODPSO clustering method has not only better clustering effect but also better stability than all other 
clustering methods.  

 
Table 2. Mean and standard deviation results of DBI for all clustering methods 

Clustering 
method 

 
Ratio of labeled data (%) 

10 20 30 40 50 60 70 80 90 100 
EODPSO Mean 0.3985 0.3546 0.3373 0.3305 0.3215 0.3182 0.3143 0.3117 0.3094 0.3076 

Std 0.0025 0.0041 0.0063 0.0124 0.0039 0.0105 0.0085 0.0068 0.0042 0.0038 
PSO Mean 0.6681 0.6174 0.5911 0.5855 0.5676 0.5456 0.5335 0.5309 0.5248 0.5185 

Std 0.0125 0.0091 0.0108 0.0174 0.0098 0.0116 0.0145 0.0078 0.0137 0.0074 
DEPSO Mean 0.6052 0.5477 0.5234 0.5086 0.5028 0.4847 0.4813 0.4739 0.4672 0.4655 

Std 0.0115 0.0085 0.00145 0.0095 0.0135 0.0074 0.0095 0.0068 0.0116 0.0061 
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Clustering 
method 

 
Ratio of labeled data (%) 

10 20 30 40 50 60 70 80 90 100 
CPSO Mean 0.4968 0.4419 0.4182 0.4047 0.4021 0.3917 0.3878 0.3806 0.3772 0.3737 

Std 0.0059 0.0133 0.0093 0.0085 0.0105 0.0093 0.0089 0.0145 0.0062 0.0041 
CAPSO Mean 0.4765 0.4363 0.4238 0.4114 0.3933 0.3771 0.3727 0.3683 0.3607 0.3579 

Std 0.0146 0.0139 0.0082 0.0058 0.0092 0.0047 0.0106 0.0095 0.0087 0.0069 
EPSO Mean 0.4557 0.4033 0.3801 0.3754 0.3609 0.3577 0.3517 0.3452 0.3414 0.3375 

Std 0.0052 0.0066 0.0085 0.0077 0.0117 0.0106 0.0099 0.0078 0.0119 0.0101 
DBSCAN Mean 0.6423 0.6152 0.6067 0.5823 0.5758 0.5518 0.5425 0.5204 0.5101 0.5025 

Std 0.0132 0.0105 0.0082 0.0097 0.0068 0.0081 0.0087 0.0105 0.0058 0.0059 
GDBSCAN Mean 0.6258 0.5905 0.5703 0.5571 0.5409 0.5225 0.5108 0.4905 0.4792 0.4757 

Std 0.0115 0.0079 0.0087 0.0051 0.0059 0.0068 0.0091 0.0062 0.0084 0.0044 
BIRCH Mean 0.7177 0.6905 0.6852 0.6751 0.6658 0.6419 0.6312 0.6218 0.6102 0.6057 

Std 0.0125 0.0105 0.0112 0.0095 0.0071 0.0078 0.0083 0.0092 0.0085 0.0068 
CLARANS Mean 0.7081 0.6849 0.6705 0.6618 0.6603 0.6517 0.6389 0.6154 0.6058 0.5962 

Std 0.0097 0.0095 0.0118 0.0068 0.0074 0.0066 0.0087 0.0059 0.0093 0.0082 
GA Mean 0.6788 0.6525 0.6409 0.6385 0.6197 0.5986 0.5884 0.5728 0.5621 0.5584 

Std 0.0095 0.0115 0.0093 0.0085 0.0068 0.0087 0.0094 0.0121 0.0075 0.0103 
SA Mean 0.6518 0.6347 0.6214 0.6156 0.6033 0.5909 0.5817 0.5604 0.5536 0.5477 

Std 0.0067 0.0095 0.0094 0.0072 0.0117 0.0102 0.0047 0.0061 0.0093 0.0088 

The best results are highlighted in bold.  
 

Table 3. Mean and standard deviation results of accuracy for all clustering methods 
Clustering 

method 
 

Ratio of labeled data (%) 

10 20 30 40 50 60 70 80 90 100 
EODPSO Mean 0.8194 0.8686 0.8895 0.9043 0.9195 0.9256 0.9307 0.9365 0.9419 0.9448 

Std 0.0035 0.0052 0.0074 0.0072 0.0115 0.0041 0.0053 0.0107 0.0038 0.0056 
PSO Mean 0.6057 0.6409 0.6628 0.6799 0.6852 0.6994 0.7008 0.7095 0.7132 0.7176 

Std 0.0081 0.0057 0.0087 0.0093 0.0137 0.0142 0.0096 0.0075 0.0124 0.0088 
DEPSO Mean 0.6389 0.6774 0.6998 0.7153 0.7289 0.7347 0.7419 0.7493 0.7559 0.7587 

Std 0.0079 0.0103 0.0114 0.0096 0.0103 0.0062 0.0081 0.0066 0.0103 0.0065 
CPSO Mean 0.6731 0.7144 0.7262 0.7337 0.7404 0.7578 0.7642 0.7707 0.7798 0.7843 

Std 0.0136 0.0107 0.0098 0.0077 0.0096 0.0058 0.0072 0.0073 0.0076 0.0086 
CAPSO Mean 0.6896 0.7304 0.7453 0.7585 0.7622 0.7776 0.7815 0.7978 0.8029 0.8067 

Std 0.0087 0.0108 0.0097 0.0083 0.0107 0.0069 0.0059 0.0061 0.0065 0.0072 
EPSO Mean 0.7498 0.7884 0.8108 0.8143 0.8198 0.8289 0.8347 0.8425 0.8471 0.8502 

Std 0.0085 0.0077 0.0083 0.0079 0.0049 0.0102 0.0066 0.0047 0.0041 0.0059 
DBSCAN Mean 0.6059 0.6307 0.6442 0.6537 0.6605 0.6825 0.6919 0.7039 0.7156 0.7288 

Std 0.0112 0.0105 0.0078 0.0082 0.0093 0.0097 0.0065 0.0104 0.0085 0.0069 
GDBSCAN Mean 0.6205 0.6524 0.6693 0.6723 0.6899 0.6954 0.7072 0.7161 0.7224 0.7361 

Std 0.0071 0.0065 0.0061 0.0058 0.0074 0.0096 0.0124 0.0085 0.0049 0.0064 
BIRCH Mean 0.5201 0.5525 0.5609 0.5725 0.5905 0.6026 0.6122 0.6281 0.6303 0.6457 

Std 0.0128 0.0099 0.0113 0.0042 0.0071 0.0085 0.0095 0.0059 0.0067 0.0078 
CLARANS Mean 0.5187 0.5454 0.5584 0.5619 0.5767 0.5851 0.5905 0.6048 0.6133 0.6297 

Std 0.0078 0.0106 0.0092 0.0067 0.0069 0.0075 0.0081 0.0058 0.0095 0.0108 
GA Mean 0.5504 0.5891 0.5957 0.6097 0.6147 0.6255 0.6339 0.6587 0.6631 0.6709 

Std 0.0134 0.0077 0.0089 0.0065 0.0117 0.0095 0.0058 0.0075 0.0071 0.0109 
SA Mean 0.5357 0.5625 0.5823 0.5944 0.6036 0.6154 0.6208 0.6374 0.6452 0.6509 

Std 0.0089 0.0067 0.0084 0.0057 0.0104 0.0108 0.0074 0.0082 0.0065 0.0077 

The best results are highlighted in bold. 
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Table 4. Mean and standard deviation results of ARI for all clustering methods 
Clustering 

method 
 

Ratio of labeled data (%) 
10 20 30 40 50 60 70 80 90 100 

EODPSO Mean 0.7911 0.8479 0.8795 0.8846 0.8954 0.9037 0.9138 0.9198 0.9237 0.9296 
Std 0.0042 0.0107 0.0042 0.0045 0.0066 0.0106 0.0054 0.0069 0.0074 0.0038 

PSO Mean 0.4022 0.4781 0.5028 0.5229 0.5238 0.5284 0.5292 0.5367 0.5399 0.5426 
Std 0.0155 0.0074 0.0084 0.0069 0.0138 0.0117 0.0133 0.0112 0.0093 0.0136 

DEPSO Mean 0.4871 0.5479 0.5595 0.5986 0.6117 0.6208 0.6215 0.6393 0.6432 0.6451 
Std 0.0106 0.0096 0.0097 0.0057 0.0117 0.0101 0.0067 0.0097 0.0088 0.0072 

CPSO Mean 0.5569 0.6188 0.6438 0.6767 0.6881 0.6917 0.6991 0.7247 0.7358 0.7404 
Std 0.0091 0.0078 0.0075 0.0107 0.0114 0.0063 0.0057 0.0092 0.0087 0.0069 

CAPSO Mean 0.5855 0.6504 0.6893 0.6935 0.7039 0.7233 0.7386 0.7438 0.7489 0.7517 
Std 0.0058 0.0053 0.0044 0.0094 0.0063 0.0086 0.0112 0.0075 0.0105 0.0093 

EPSO Mean 0.6994 0.7539 0.7648 0.7931 0.8087 0.8125 0.8208 0.8367 0.8392 0.8433 
Std 0.0124 0.0083 0.0046 0.0086 0.0059 0.0058 0.0116 0.0071 0.0076 0.0115 

DBSCAN Mean 0.4261 0.4652 0.5104 0.5289 0.5317 0.5425 0.5596 0.5663 0.5782 0.5809 
Std 0.0112 0.0095 0.0068 0.0074 0.0105 0.0088 0.0062 0.0069 0.0081 0.0085 

GDBSCAN Mean 0.4585 0.5017 0.5305 0.5528 0.5607 0.5725 0.5831 0.5966 0.6065 0.6171 
Std 0.0069 0.0075 0.0058 0.0091 0.0107 0.0074 0.0083 0.0062 0.0079 0.0082 

BIRCH Mean 0.3582 0.4028 0.4387 0.4519 0.4611 0.4725 0.4868 0.4993 0.5177 0.5239 
Std 0.0115 0.0131 0.0085 0.0096 0.0091 0.0082 0.0079 0.0098 0.0106 0.0072 

CLARANS Mean 0.3717 0.4359 0.4812 0.4869 0.4927 0.5036 0.5108 0.5193 0.5276 0.5369 
Std 0.0073 0.0084 0.0109 0.0056 0.0078 0.0092 0.0064 0.0085 0.0105 0.0117 

GA Mean 0.3851 0.4125 0.4329 0.4441 0.4525 0.4688 0.4726 0.4886 0.4969 0.5098 
Std 0.0085 0.0071 0.0105 0.0069 0.0073 0.0098 0.0134 0.0128 0.0076 0.0094 

SA Mean 0.3925 0.4426 0.4592 0.4609 0.4722 0.4814 0.4961 0.5005 0.5174 0.5204 
Std 0.0139 0.0072 0.0103 0.0065 0.0082 0.0087 0.0073 0.0102 0.0095 0.0073 

The best results are highlighted in bold. 
 

Table 5. Mean and standard deviation results of NMI for all clustering methods 
Clustering 

method 
 

Ratio of labeled data (%)
10 20 30 40 50 60 70 80 90 100 

EODPSO Mean 0.8103 0.8587 0.8795 0.8812 0.8891 0.8925 0.8996 0.9129 0.9153 0.9213 
Std 0.0067 0.0072 0.0107 0.0059 0.0074 0.0035 0.0113 0.0059 0.0043 0.0041 

PSO Mean 0.5951 0.6422 0.6678 0.6691 0.6899 0.7072 0.7068 0.7155 0.7193 0.7232 
Std 0.0085 0.0128 0.0105 0.0113 0.0084 0.0079 0.0096 0.0071 0.0062 0.0117 

DEPSO Mean 0.6494 0.6895 0.7034 0.7388 0.7568 0.7603 0.7731 0.7771 0.7836 0.7892 
Std 0.0095 0.0091 0.0129 0.00132 0.0081 0.0069 0.0118 0.0093 0.0072 0.0101 

CPSO Mean 0.6958 0.7296 0.7481 0.7576 0.7782 0.7903 0.8069 0.8108 0.8182 0.8229 
Std 0.0131 0.0082 0.0076 0.0075 0.0109 0.0073 0.0047 0.0067 0.0058 0.0102 

CAPSO Mean 0.6866 0.7423 0.7622 0.7698 0.7799 0.7873 0.8093 0.8206 0.8278 0.8305 
Std 0.0087 0.0075 0.0115 0.0097 0.0108 0.0076 0.0085 0.0077 0.0083 0.0073 

EPSO Mean 0.7363 0.7795 0.7958 0.8094 0.8195 0.8218 0.8376 0.8445 0.8569 0.8611 
Std 0.0074 0.0083 0.0114 0.0105 0.0077 0.0059 0.0088 0.0073 0.0041 0.0052 

DBSCAN Mean 0.6109 0.6528 0.6792 0.6877 0.7031 0.7185 0.7225 0.7298 0.7346 0.7388 
Std 0.0102 0.0108 0.0078 0.0082 0.0065 0.0083 0.0095 0.0115 0.0086 0.0069 

GDBSCAN Mean 0.6232 0.6755 0.6947 0.6994 0.7196 0.7226 0.7359 0.7431 0.7568 0.7605 
Std 0.0098 0.0076 0.0071 0.0062 0.0098 0.0057 0.0094 0.0108 0.0074 0.0068 

BIRCH Mean 0.5389 0.5705 0.5963 0.6193 0.6258 0.6377 0.6425 0.6499 0.6526 0.6615 
Std 0.0124 0.0098 0.0074 0.0126 0.0109 0.0073 0.0068 0.0077 0.0071 0.0105 

CLARANS Mean 0.5402 0.5917 0.6158 0.6351 0.6408 0.6479 0.6504 0.6682 0.6794 0.6823 
Std 0.0081 0.0095 0.0077 0.0054 0.0061 0.0093 0.0117 0.0079 0.0083 0.0092 

GA Mean 0.5525 0.6004 0.6221 0.6387 0.6429 0.6554 0.6627 0.6763 0.6841 0.6909 
Std 0.0068 0.0074 0.0052 0.0059 0.0091 0.0127 0.0082 0.0088 0.0065 0.0112 

SA Mean 0.5769 0.6211 0.6387 0.6401 0.6535 0.6592 0.6675 0.6852 0.6968 0.7055 
Std 0.0133 0.0114 0.0083 0.0064 0.0081 0.0095 0.0086 0.0105 0.0074 0.0108 

The best results are highlighted in bold. 
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Tables 6, 7 and Fig. 8 show the comparisons of clustering parameters calculated by different 
optimization algorithms in the framework of MUIP clustering. Table 6 lists the optimal values of σ. We 
see clearly that EODPSO clustering method gives the best optimal values and has better stability than 
other clustering methods. Furthermore, we note that since different ratios of labeled data influence the 
values of the fuzzy partition matrix and cluster centers, the values of the optimized σ vary with the number 
of labeled data. 

 

Table 6. Comparison of optimal values of σ  
Clustering 

method  
Ratio of labeled data (%) 

10 20 30 40 50 60 70 80 90 100 
EODPSO Mean 1.3347 1.3339 1.3327 1.3331 1.3325 1.3323 1.3319 1.3315 1.3312 1.3309 

Std 0.0014 0.0017 0.0035 0.0024 0.0022 0.0019 0.0015 0.0023 0.0032 0.0021 
PSO Mean 2.1367 2.1362 2.1355 2.1348 2.1343 2.1341 2.1335 2.1332 2.1329 2.1324 

Std 0.0053 0.0059 0.0042 0.0035 0.0027 0.0031 0.0022 0.0059 0.0026 0.0034 
DEPSO Mean 1.9621 1.9615 1.9576 1.9497 1.9471 1.9425 1.9417 1.9415 1.9411 1.9408 

Std 0.0035 0.0024 0.0035 0.0047 0.0024 0.0039 0.0026 0.0025 0.0058 0.0047 
CPSO Mean 1.7553 1.7544 1.7541 1.7537 1.7532 1.7524 1.7519 1.7514 1.7512 1.7508 

Std 0.0032 0.0019 0.0042 0.0023 0.0029 0.0024 0.0067 0.0053 0.0022 0.0032 
CAPSO Mean 1.6455 1.6349 1.6338 1.6317 1.6234 1.6225 1.6221 1.6319 1.6217 1.6216 

Std 0.0027 0.0024 0.0073 0.0062 0.0033 0.0025 0.0023 0.0036 0.0054 0.0043 
EPSO Mean 1.4718 1.4632 1.4621 1.4583 1.4565 1.4539 1.4533 1.4527 1.4523 1.4521 

Std 0.0018 0.0047 0.0024 0.0068 0.0032 0.0051 0.0039 0.0028 0.0037 0.0026 
GA Mean 2.4657 2.4633 2.4601 2.4575 2.4557 2.4538 2.4527 2.4518 2.4515 2.4513 

Std 0.0021 0.0019 0.0035 0.0032 0.0058 0.0042 0.0039 0.0026 0.0027 0.0034 
SA Mean 2.2796 2.2771 2.2753 2.2695 2.2649 2.2573 2.2569 2.2557 2.2553 2.2551 

Std 0.0034 0.0057 0.0051 0.0048 0.0052 0.0026 0.0029 0.0035 0.0031 0.0027 
The best results are highlighted in bold. 

 

Table 7. Comparison of number of clusters  
Clustering 

method 
 

Ratio of labeled data (%)
10 20 30 40 50 60 70 80 90 100 

EODPSO Mean 46.23 47.35 47.41 48.34 52.2 50.13 51.00 50.67 51.00 51.00 
Std 0.58 0.41 0.26 0.35 0.27 0.35 0.00 0.23 0.00 0.00 

PSO Mean 37.63 40.51 39.32 41.39 42.42 41.36 44.2 45.36 46.76 45.58 
Std 0.95 0.59 0.35 0.52 0.45 0.86 0.39 0.27 0.69 0.34 

DEPSO Mean 39.35 41.16 41.26 43.72 41.32 44.75 43.32 46.63 46.57 48.55 
Std 0.74 0.52 0.29 0.37 0.67 0.47 0.42 0.52 0.47 0.49 

CPSO Mean 40.5 41.37 43.39 42.05 43.24 45.17 47.35 47.26 45.82 52.14 
Std 0.67 0.55 0.34 0.41 0.84 0.38 0.68 0.49 0.58 0.68 

CAPSO Mean 43.15 45.84 42.35 45.41 47.19 47.63 48.29 53.74 53.06 49.3 
Std 0.54 0.48 0.38 0.56 0.33 0.46 0.35 0.38 0.31 0.36 

EPSO Mean 43.35 41.24 45.52 56.42 46.36 47.52 53.29 49.41 47.37 52.76 
Std 0.71 0.43 0.27 0.29 0.41 0.33 0.51 0.68 0.55 0.25 

GA Mean 35.96 31.18 32.26 38.69 40.82 34.4 34.25 35.57 33.68 38.36 
Std 0.89 0.75 0.45 0.39 0.32 0.59 0.73 0.54 0.59 0.73 

SA Mean 37.05 37.36 35.7 36.96 38.54 35.18 36.59 37.42 37.68 39.32 
Std 0.86 0.71 0.44 0.64 0.57 0.36 0.68 0.97 0.62 0.58 

The best results are highlighted in bold. 
 

Table 7 shows the comparison of the numbers of clusters. In our experiments, the true number of 
clusters in MUIP data collection is 51. It is observed that with the increase of labeled data, the numbers 
of clusters of all clustering methods tend to the true number of clusters. Especially, the obtained numbers 
of clusters from EODPSO clustering method are the most close to the true number of clusters. Moreover, 
EODPSO clustering method shows better stability than other clustering methods.  
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Fig. 8. Comparison of initial cluster centers: (a) EODPSO, (b) PSO, (c) DEPSO, (d) CPSO, (e) CAPSO, 
(f) EPSO, (g) GA, and (h) SA clusterings. 
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The results of the experiments mentioned above indicate that the overall performance of SSKFCM 
clustering method increases with an increasing number of labeled data and the influence of SSKFCM 
clustering method decreases. Thus, in order to compare the results of initial cluster centers, we randomly 
select 10% data as labeled data and the rest as unlabeled data in our experiments. Fig. 8 shows the 
comparison of initial cluster centers computed using different optimization algorithms in the framework 
of MUIP clustering. Two optimal initial cluster centers are generated by different optimization 
algorithms. We find that the optimal initial cluster centers from EODPSO clustering method are the most 
close to the true cluster centers compared to other clustering methods. 

From Tables 6, 7 and Fig. 8, we find that EODPSO algorithm produces the best results in terms of 
optimization of clustering parameters, compared to other optimization algorithms. This is because, first, 
EODPSO algorithm enhances the local search ability and global search ability through CA and the new 
population search strategy. Second, COL is used to initialize the population of PSO, which avoids the 
randomness of the initial solutions and makes EODPSO algorithm more stable than other optimization 
algorithms. 

To further analyze the performance of EODPSO algorithm in the framework of MUIP clustering, we 
compare the convergences of EODPSO, PSO, DEPSO, CPSO, CAPSO, EPSO, GA, and SA clustering 
methods in the second experiment. According to the analysis of the first experiment, we concentrate on 
convergence of these clustering methods with a small number of labeled data. Thus, we randomly select 
10% labeled data and 90% unlabeled data, and all clustering methods are run 20 times independently on 
MUIP data. The mean and standard deviation of optimal values of the objective function are shown in 
Table 8, where the best results are highlighted in bold. It can be seen from Table 8 that EODPSO clustering 
method produces the best results in finding global optimum and has the best stability, compared to other 
clustering methods. It is quite understandable because EODPSO algorithm has better global search ability 
to optimize clustering parameters. 

 
Table 8. Mean and standard deviation results of convergence for all SSKFCM methods 

Clustering EODPSO PSO DEPSO CPSO CAPSO EPSO GA SA 

Mean 4.6980 5.0784 4.9578 4.9156 4.8455 4.7566 5.2536 5.3352 

Std 0.0043 0.0074 0.0066 0.0054 0.0059 0.0046 0.0072 0.0081 
The best results are highlighted in bold. 

 
The convergence processes of all methods are shown in Fig. 9. Obviously, EODPSO clustering method 

achieves the global optimal solution at around 40 iterations. By contrast, other clustering methods do not 
achieve global optimal solutions within 40 iterations. It indicates that the convergence speed of EODPSO 
clustering method is faster than other methods. The best fitness value is 4.698. In EODPSO algorithm, 
we use a hybrid strategy to avoid local minima and accelerate convergence speed. Therefore, when falling 
into local optimum, only EODPSO clustering method can jump out of local optima to continue searching 
for global optimum.  

Through the above comparison, it can be concluded that the proposed clustering method has the best 
overall performance in terms of clustering effect and convergence. This is because the EODPSO clustering 
method has the following advantages over other clustering: 
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(1) Compared to other clustering methods, SSKFCM clustering method is more suitable to cluster 
MUIP data. 

(2) In the framework of MUIP clustering, EODPSO algorithm performs better than PSO, DEPSO, 
CPSO, CAPSO, EPSO, GA, and SA clustering methods when optimizing the clustering 
parameters. 

 

 
Fig. 9. The convergence comparison of all SSKFCM clustering methods. 

 
 

5. Conclusion 

In this paper, we propose a MUIP clustering method for the purpose of MUIP data analysis. By 
studying the advantages and drawbacks of SSKFCM clustering, we apply SSKFCM clustering to cluster 
MUIP data and utilize PSO algorithm to optimize SSKFCM clustering parameters. Motivated by the 
recent research on the variant PSO algorithm, we present a hybrid PSO algorithm, namely EODPSO, for 
the purpose of improving PSO algorithm. In EODPSO algorithm, COL is used to generate the initial 
population and CA is employed to enhance local search ability. Additionally, to further improve global 
search ability, EODPSO algorithm makes two improvements. Firstly, an improved intuitionistic fuzzy 
entropy measure is proposed to accurately measure the diversity of particle swarm. Secondly, a new 
population search strategy by combing OL and DE is proposed to strengthen the global convergence. The 
experiments compare the proposed clustering method with other relevant clustering methods on the 
MUIP data set. The results show that our clustering method achieves better results than other clustering 
methods in terms of clustering effect and convergence. 

In the future work, in order to further improve the performance of our clustering method, we will 
collect more MUIP data to enrich the data set and strengthen the theoretical analysis of the relationship 
between labeled and unlabeled. We will use other evaluation metrics to evaluate the performance of our 
clustering method from different points. Moreover, we will investigate existing retrieval methods and 
intend to incorporate our clustering method into MUIP selection. 
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