• 제목/요약/키워드: hidden information

검색결과 1,216건 처리시간 0.026초

HMM을 이용한 HDFS 동적 데이터 복제 알고리즘 (A Dynamic Data Replication Algorithm Using Hidden Markov Model for HDFS)

  • 박나영;윤희용
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2014년도 제50차 하계학술대회논문집 22권2호
    • /
    • pp.327-328
    • /
    • 2014
  • 클라우드 컴퓨팅 환경에서는 시스템의 성능 및 비용적인 측면에서 정보 공유의 용이성, 장소의 제약성 최소화, 저장 공간의 효율적 사용을 위해 분산 파일시스템을 이용하고 있다. 하지만 현재 HDFS의 복제 정책은 모든 데이터에 3개의 복제복을 유지하도록 하고 있다. 하지만 이러한 정책은 데이터의 중요도, 이용빈도수를 반영하지 못한 정책으로 상이한 서비스 품질 및 신뢰성 수준을 반영하지 못한다. 본 논문에서는 Hidden Markov Model을 이용하여 데이터의 이용 빈도수에 따라 복사본의 개수를 조절하는 알고리즘을 제안한다.

  • PDF

Cognitive Radio 네트워크에서 Hidden Node 문제 해결을 위한 Safety Zone 기반의 통신 프로토콜 (A Communication Protocol Based on Safety Zone for Solving Hidden Node Problem in Cognitive Radio Networks)

  • 정필중;신요안;이원철;유명식
    • 한국통신학회논문지
    • /
    • 제33권1B호
    • /
    • pp.8-15
    • /
    • 2008
  • CR(Cognitive Radio)은 우선 사용자 네트워크와 공존함으로써 주파수 효율을 극대화할 수 있는 기술이다. 이러한 CR 기술의 가장 우선해야 될 과제는 우선 사용자 시스템에 대한 보호이다. 이를 위해 CR 네트워크는 주기적으로 우선 사용자의 주파수 사용을 탐지하고 우선 사용자 시스템에 간섭을 주지 않기 위해 통신 파라미터를 조절하게 된다. 하지만 CR 네트워크의 특성상 스펙트럼 검출을 통해서도 발견되지 않는 우선 사용자인 HN(Hidden Node)가 존재하게 된다. 이러한 HN가 사용하는 무선 자원을 CR 네트워크에서는 유휴자원이라 판단함으로써 우선 사용자에게 간섭을 주는 문제가 발생하며, 이는 CR 네트워크의 올바른 운용을 방해하는 요인으로 작용한다. 따라서 CR 네트워크의 안전하고 올바른 운용을 위해서는 HN 문제를 해결할 수 있는 방법이 절실히 요구된다. 본 논문에서는 이러한 HN 문제를 해결할 수 있는 방법을 제시하며, 이에 대한 성능 평가를 수행하였다.

고객만족, NPS, Bayesian Inference 및 Hidden Markov Model로 구현하는 명품구매에 관한 확률적 추적 메카니즘 (A Probabilistic Tracking Mechanism for Luxury Purchase Implemented by Hidden Markov Model, Bayesian Inference, Customer Satisfaction and Net Promoter Score)

  • 황선주;이정수
    • 한국산업정보학회논문지
    • /
    • 제23권6호
    • /
    • pp.79-94
    • /
    • 2018
  • 마케팅 분야에서는 제품품질, 고객만족, 고객추천을 바탕으로 구매행동과의 영향 유무 및 상관관계를 통계적 Regression 방법으로 가설 검증하는 것을 주요한 연구 대상으로 하고 있다. 또한 최근에는 ASCI와 같은 고객만족지수 혹은 라이켈트의 NPS와 같은 고객추천지수를 바탕으로 실제 기업성과와 연관되는 시장 지분에 어떠한 영향을 미치는 지에 대한 통계적 분석 연구도 활발히 이루어지고 있다. 본 연구에서는 실제 고객이 매장을 방문하여, 과거 고객카드에 명품을 구매하던 구매하지 않던 간에 만족/불만족을 표시한 체인 및 고객 추천의향을 검토하여 Hidden Markov Model을 이용한 고객의 최상의 구매패턴을 분석하는 확률적 기법에 대하여 연구하는 것을 목적으로 하고 있다. 이를 바탕으로 고객만족 -> 고객추천의향 -> 고객추천행동->구매 및 재구매 체인에 대응하는 실제 소비자의 구매패턴을 고객만족과 NPS(순추천지수) 및 여러 수리통계적 이론-Hidden Markov Model, Bayesian Inference, Maximum Likelihood Estimation을 이용하여 확률적 추적 메카니즘을 구현하는 것을 목표로 한다. 제시된 목표는 인공지능을 구현하는 이론과 알고리듬을 사용하여 달성되었기에 이론적 추적 메카니즘을 여러 인공지능망 -DNN, CNN, GAN등을 사용하여 기업에서 사용할 수 있는 고객의 구매패턴 앱으로 발전시키는 것을 후속연구에서 기대한다.

Recurrent Neural Network with Multiple Hidden Layers for Water Level Forecasting near UNESCO World Heritage Site "Hahoe Village"

  • Oh, Sang-Hoon
    • International Journal of Contents
    • /
    • 제14권4호
    • /
    • pp.57-64
    • /
    • 2018
  • Among many UNESCO world heritage sites in Korea, "Historic Village: Hahoe" is adjacent to Nakdong River and it is imperative to monitor the water level near the village in a bid to forecast floods and prevent disasters resulting from floods.. In this paper, we propose a recurrent neural network with multiple hidden layers to predict the water level near the village. For training purposes on the proposed model, we adopt the sixth-order error function to improve learning for rare events as well as to prevent overspecialization to abundant events. Multiple hidden layers with recurrent and crosstalk links are helpful in acquiring the time dynamics of the relationship between rainfalls and water levels. In addition, we chose hidden nodes with linear rectifier activation functions for training on multiple hidden layers. Through simulations, we verified that the proposed model precisely predicts the water level with high peaks during the rainy season and attains better performance than the conventional multi-layer perceptron.

Analysis and Detection of Malicious Data Hidden in Slack Space on OOXML-based Corrupted MS-Office Digital Files

  • Sangwon Na;Hyung-Woo Lee
    • International journal of advanced smart convergence
    • /
    • 제12권1호
    • /
    • pp.149-156
    • /
    • 2023
  • OOXML-based MS-Office digital files are extensively utilized by businesses and organizations worldwide. However, OOXML-based MS-Office digital files are vulnerable to forgery and corruption attack by including hidden suspicious information, which can lead to activating malware or shell code being hidden in the file. Such malicious code can cause a computer system to malfunction or become infected with ransomware. To prevent such attacks, it is necessary to analyze and detect the corruption of OOXML-based MS-Office files. In this paper, we examine the weaknesses of the existing OOXML-based MS-Office file structure and analyzes how concealment and forgery are performed on MS-Office digital files. As a result, we propose a system to detect hidden data effectively and proactively respond to ransomware attacks exploiting MS-Office security vulnerabilities. Proposed system is designed to provide reliable and efficient detection of hidden data in OOXML-based MS-Office files, which can help organizations protect against potential security threats.

SR DEVS에서 하위 객체의 히든 상속 연구 (A study of hidden inheritance to the child object in SR DEVS)

  • 박상준;이종찬
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2019년도 제60차 하계학술대회논문집 27권2호
    • /
    • pp.127-128
    • /
    • 2019
  • 본 논문에서는 SR DEVS에서 부모 객체가 자식 개체로의 상속에서 입력 함수와 출력 함수의 상속 형태에 대한 특정한 상황을 고려한다. 히든 상속의 경우 자식 객체는 부모 객체로부터 부모의 자산을 상속받더라도 상속 함수에 대한 작용이 일어나지 않는다. 이 경우 부모에게서 넘겨받은 자산에 대해 상속받지 못한 것은 아니며 단지 숨겨진 상태를 의미한다.

  • PDF

적응 역전파 신경회로망의 은닉 층 노드 수 설정에 관한 연구 (On the set up to the Number of Hidden Node of Adaptive Back Propagation Neural Network)

  • 홍봉화
    • 정보학연구
    • /
    • 제5권2호
    • /
    • pp.55-67
    • /
    • 2002
  • 본 논문에서는 학습계수를 발생한 오차에 따라서 적응적으로 갱신할 수 있는 학습알고리즘에 은닉 노드의 수를 다양하게 변화시킬 수 있는 적응 역 전파(Back Propagation) 알고리즘을 제안하였다. 제안한 알고리즘은 국소점을 벗어날 수 있는 것으로 기대되고, 수렴환경에 알맞은 은닉 노드의 수를 설정할 수 있다. 모의실험에서는 두 가지의 학습패턴을 가지고 실험하였다. 하나는 X-OR 문제에 대한 학습과 또 다른 하나는 $7{\times}5$ 도트 영문자 폰트에 에 대한 학습이다. 두 모의실험에서 국소 점으로 안주할 확률은 감소하였다. 또한, 영문자 폰트 학습에서의 신경회로망은 기존의 역 전파 알고리즘과 HNAD 알고리즘에 비하여 약 41.56%~58.28%정도 학습효율이 향상됨을 고찰하였다.

  • PDF

Aeroengine performance degradation prediction method considering operating conditions

  • Bangcheng Zhang;Shuo Gao;Zhong Zheng;Guanyu Hu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권9호
    • /
    • pp.2314-2333
    • /
    • 2023
  • It is significant to predict the performance degradation of complex electromechanical systems. Among the existing performance degradation prediction models, belief rule base (BRB) is a model that deal with quantitative data and qualitative information with uncertainty. However, when analyzing dynamic systems where observable indicators change frequently over time and working conditions, the traditional belief rule base (BRB) can not adapt to frequent changes in working conditions, such as the prediction of aeroengine performance degradation considering working condition. For the sake of settling this problem, this paper puts forward a new hidden belief rule base (HBRB) prediction method, in which the performance of aeroengines is regarded as hidden behavior, and operating conditions are used as observable indicators of the HBRB model to describe the hidden behavior to solve the problem of performance degradation prediction under different times and operating conditions. The performance degradation prediction case study of turbofan aeroengine simulation experiments proves the advantages of HBRB model, and the results testify the effectiveness and practicability of this method. Furthermore, it is compared with other advanced forecasting methods. The results testify this model can generate better predictions in aspects of accuracy and interpretability.

Hidden Markov Model 과 Genetic Algorithm을 이용한 온라인 문자인식에 관한 연구 (On-Line Character Recognition using Hidden Markov Model and Genetic Algorithm)

  • 홍영표;장춘서
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 추계종합학술대회 논문집(3)
    • /
    • pp.29-32
    • /
    • 2000
  • HMM(Hidden Markov Model)은 시간적인 정보를 토대로 하는 수학적인 방법으로서 문자인식에 많이 사용되어지고 있다. 그런데 HMM이 적용되고자 하는 문제에서 사용되어지는 상태 수와 HMM에서 사용되어지는 parameter들은 처음에 결정되는 값들에 의해서 상당히 많은 영향을 받게 된다. 따라서 한글의 특성을 이용한 HMM의 상태 수를 결정한 후 결정되어진 각각의 HMM parameter들을 Genetic Algorithm을 이용하였다. Genetic Algorithm은 매개변수 최적화 문제에 대하여 자연의 진화 원리를 마땅한 알고리즘으로 선택, 교배, 돌연변이 연산을 이용하여 최적의 개체를 구하게 된다. 여기서는 HMM에서의 Viterbi Algorithm을 적합도 검사에 사용하였다.

  • PDF

SR DEVS에서 숨겨진 상속에 대한 결정확률 함수의 연구 (A study of determination probability function to the hidden inheritance in SR DEVS)

  • 박상준;이종찬
    • 한국컴퓨터정보학회논문지
    • /
    • 제20권1호
    • /
    • pp.137-142
    • /
    • 2015
  • SR DEVS 모델링에 의한 객체 상속은 일부 자산에 대한 숨겨진 상속이 가능하다. 부모 객체로부터 넘겨받은 자산에 대해 자식 객체는 넘겨받은 자산의 일부 혹은 전부를 각각의 지정된 함수에 의해 수행할 수도 수행하지 않을 수도 있다. 자산 수행에 대한 숨겨진 상속은 자식 객체가 해당 자산에 대해 자원은 보유하고 있더라도 그것에 대한 수행은 하지 않는 것이다. 상속된 자산은 자식 객체의 자산 수행 전체에 나타나지 않을 수도 있으며, 특정한 시스템 상태에 따라 자산 수행을 할 수 있다. 여기서 자산 수행 전체라 함은 자식 객체가 생성되어 소멸될 때까지의 시간적 요소도 포함된다. 본 논문에서는 부모 객체로부터 상속받은 자산에 대해 숨겨진 상속 결정에 대한 확률 방안을 기술한다. 결정확률 함수에 의해 상속 자산이 숨겨진 상속이 될지 정상 상속이 될지 결정되는 것이다.