
International Journal of Advanced Smart Convergence Vol.12 No.1 149-156 (2023)

http://dx.doi.org/10.7236/IJASC.2023.12.1.149

Copyright© 2023 by The Institute of Internet, Broadcasting and Communication. This is an Open Access article distributed under the terms of
the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0)

Analysis and Detection of Malicious Data Hidden in Slack Space

on OOXML-based Corrupted MS-Office Digital Files

Sangwon Na1, Hyung-Woo Lee2

1Bachelor student, Div. of Computer Engineering, Hanshin University, Korea
2Professor, Div. of Computer Engineering, Hanshin University, Korea

E-mail: 1yournsw@naver.com, 2hwlee@hs.ac.kr

Abstract

OOXML-based MS-Office digital files are extensively utilized by businesses and organizations worldwide.
However, OOXML-based MS-Office digital files are vulnerable to forgery and corruption attack by including
hidden suspicious information, which can lead to activating malware or shell code being hidden in the file.
Such malicious code can cause a computer system to malfunction or become infected with ransomware. To
prevent such attacks, it is necessary to analyze and detect the corruption of OOXML-based MS-Office files. In
this paper, we examine the weaknesses of the existing OOXML-based MS-Office file structure and analyzes
how concealment and forgery are performed on MS-Office digital files. As a result, we propose a system to
detect hidden data effectively and proactively respond to ransomware attacks exploiting MS-Office security
vulnerabilities. Proposed system is designed to provide reliable and efficient detection of hidden data in
OOXML-based MS-Office files, which can help organizations protect against potential security threats.

Keywords: Corrupted Digital File, OOXML-based MS-Office, Slack Space Detection, Digital Forensics, Ransomware.

1. Introduction

To determine if a digital file stored on a computer system has been modified, a cryptographic hash function

like SHA256 is commonly used to generate one-way hash values from the original file and the modified version,

respectively. By comparing these values, it is possible to determine whether the original digital file has been

forged or altered. However, if there is no original file available for comparison, it becomes difficult to

determine whether the corresponding digital file has been corrupted. In such cases, checking whether a file is

damaged or not may be a more appropriate approach. The internal structure of a digital file may be changed in

an illegal and malicious form, or used to hide malicious code within the file[1,2,3]. With the increasing use of

MS-Office files, security vulnerabilities that exploit the internal structural problems of MS Office series are

being discovered. In particular, malicious ransomware is now being distributed through corrupted MS-Office

files with malicious codes hidden in image files such as JPG/PNG/BMP. Therefore, it is necessary to develop

IJASC 23-1-18

Manuscript Received: February. 8, 2023 / Revised: February. 14, 2023 / Accepted: February. 18, 2023
Corresponding Author: hwlee@hs.ac.kr
Tel: +82-31-379-0642
Professor, Divison of Computer Engineering, Hanshin University, Korea

150 International Journal of Advanced Smart Convergence Vol.12 No.1 149-156 (2023)

a mechanism to efficiently determine whether a file is damaged or maliciously forged or altered by analyzing

the abnormality of the internal structure of MS-Office files.

Existing digital forensic tools may not be able to detect additional digital information or malicious code

stored in a digital file that exploits the vulnerability of the digital file storage method and internal structure.

MS-Office files are particularly vulnerable to this type of attack, as they are stored in the form of a ZIP

compressed file based on the OOXML format, and various elements in the document are managed in the form

of XML[4,5,6]. While the OOXML format provides efficiency in the saving process, it can also be exploited

to hide malicious scripts in MS-Office files. Through the OOXML internal structure analysis of MS-Office

digital files, it is possible to detect malicious scripts, check for malicious forgery and file damage, and identify

abnormal MS-Office files. This process can also detect malicious files hidden inside the digital files. Therefore,

a mechanism that can efficiently determine whether a file is damaged or maliciously forged or altered by

analyzing the abnormality of the internal structure of MS-Office files is proposed in this study.

As a result, the proposed mechanism can be used to determine whether a digital file is damaged or has been

maliciously forged or altered. By verifying and determining whether the files are damaged through internal

structure analysis of MS Office files, it is possible to check for malicious scripts, detect malicious files hidden

inside, and identify abnormal MS-Office files. In the digital forensic process, the proposed mechanism can be

useful for efficiently detecting and discriminating if a file is damaged or corrupted by exploiting the

vulnerability of the file's internal structure to hide a specific message.

2. OOXML based MS-Office Series Digital File Structure

Since MS Word 2007, MS-Office files have been converted to an OOXML-based format (Office Open

XML Format), which has been recognized as an international standard under ECMA-376 and ISO/IEC29500.

The OOXML Architecture utilizes XML to represent the contents of various documents and their relationships,

and is stored in a ZIP format file structure. Specifically, MS-Office files are stored in ZIP format based on

OOXML within the MS-Office series, and information about each directory inside MS-Office is stored in the

CDH (Central Directory Header) section, while each file is structured through the LFH (Local File Header).

By changing the extension of a DOCX document to ZIP and unzipping it, we can view the structure and

relationships, such as the MS-Office document expressed in an XML document contained in the '_rels' folder,

the XML document stored in the 'docProps' folder, and the document located in the 'word /_rels' folder. The

structure and format are defined, and various files, such as document.xml[7], are used to mark and save

information about each page in a digital document as shown in Fig. 1.

Figure 1. OOXML based MS-Office Series Digital File Structure

Analysis and Detection of Malicious Data Hidden in Slack Space on OOXML-based Corrupted MS-Office Digital Files 151

3. Hidden Malicious Data on OOXML-based MS-Office Digital File

3.1 Hiding Data on Slack Space of OOXML based MS-Office File

OOXML-based MS-Office files are saved in the ZIP format and their location is specified in the ECD (End

of Central Directory) record field located at the end of the ZIP file. Embedded XML and image files within

the MS-Word document are defined by the LFH (Local File Header), and each LFH header is referenced by

its corresponding Central Directory Header (CDH). While regular ZIP files are created and stored without any

internal slack space, multiple slack spaces may be present in each CDH and LFH when viewing the storage

bitmap of OOXML-based MS-Office files. This activates an issue where the MS-Office Editor may not

generate an error even if data is hidden in the slack space or if shell code is stored inside the MS-Office

document as shown in Fig, 2. In this study, we analyzed damaged or corrupted OOXML-based MS-Office

digital files and examined their abnormal file structures to solve this problem.

Figure 2. Data Hiding on OOXML based MS-Office Series Digital Files

3.2 Data Hiding Methods on OOXML based MS-Office File

We have described two methods for illegally hiding data by corrupting MS-Office files using an extra field

(slack space) or the file comment field. Data Hiding is possible by using the slack space such as the extra field

in LFH and CDH. In the ZIP header standard, it is defined so that the Extra Field part can be included in the

CDH and LFH parts in consideration of extensibility. In most cases, this area is not being used for any specific

purpose. However, if a malicious attacker could save data in the Extra Field, it would not be directly visible

on the MS-Office editor screen. In addition, it can be abused by manipulating the Extra Field Length part,

which is the size information of the Extra Field, to create a slack space, and to hide a file or data of an arbitrary

length in an MS-Office file as illustrated in Fig. 3.

Figure 3. Data Hiding on OOXML based Digital File
As a result of hiding data in the Extra Field of the LF header for the actual MS-Office file, it was confirmed

152 International Journal of Advanced Smart Convergence Vol.12 No.1 149-156 (2023)

that data can be saved in the normally allocated Extra Field part by overwriting method. Also, arbitrary data

could be hidden by overwriting the Extra Field without changing the overall size of the LF header. It has been

confirmed that data can be inserted into the Extra Field area even inside the CD header. In particular, in the

case of the CD header, since MS-Office files are composed of several directories in the form of OOXML, it

was confirmed that it is also possible to divide and store files to be hidden in multiple CDHs because there are

multiple CDHs. Therefore, it was found that data can be hidden by inserting it into the Extra Field when it is

divided into multiple CDHs and hidden by the partitioning method. In addition, malicious damage to MS-

Office can be performed by adjusting the number of CDHs and LFHs, deleting specific CDHs, or adding LFHs.

3.3 Comparison of Data Hiding Methods on OOXML based MS-Office File

Table 1 below provides a comparison of two data hiding methods used in MS-Office files. In the first

method, suspicious data can be hidden in the slack space of all Central Directory Headers (CDHs), which are

of a fixed size and allow fragmented data to be concealed in CDHs. This means that a file larger than 65,535

bytes can be hidden in OOXML-based MS-Office files. Additionally, the file comment field in the CDH can

also be used in the same way as the extra field. This method also increases the size of the MS-Office file, which

requires adjusting the offsets in all headers. Since only one End of Central Directory (ECD) record exists in

an MS Word file, only one hidden file comment can be used. Therefore, it will limit the amount of data that

can be hidden to a maximum of 65,535 bytes. And the file comment field in the ECD record is located at the

end of the MS-Office file structure.

Table 1. Comparison of Corruption Methods for OOXML-based MS-Office Files

MS-Office File Corruption Method Description
Size of Hidden

Data
Detection

Corrupting File Header The file header is altered to prevent the file from opening. N/A Obvious

Hidden data in LFH extra field
Suspected data is hidden in the slack space of each Local File Headers

(LFHs).

m (m<65,535)

bytes

Not

Obvious

Hidden data in CDH extra field

Suspected data is hidden in the slack space of all Central Directory

Headers (CDHs), allowing for fragmented data to be concealed in

CDHs.

65,535 bytes
Not

Obvious

Hidden data in CDH comment

field

Data is hidden in the file comment field of the CDH, which is used in the

same way as the extra field. A NULL must be included at the beginning

of the hidden data to prevent it from being displayed in MS-Office

software.

65,535 bytes
Not

Obvious

Hidden data in ECD comment field

Data is hidden in the file comment field of the End of Central Directory

(ECD) record. Only one hidden file comment can be used, limiting the

amount of data that can be hidden.

65,535 bytes
Not

Obvious

Encrypted data
The data within the file is encrypted, making it unreadable without a

decryption key.
N/A

Not

Obvious

To summarize the process of hiding abnormal data by analyzing the internal structure of the MS-Office file,

it involves (1) directly modifying or changing various files included in the MS-Office file, such as XML or

multimedia objects, (2) concealing arbitrary messages by using the Extra Field part in the CD header and LF

header, which are MS-Office storage methods, and (3) analyzing the internal structure of the MS-Office file

to determine if the file has been damaged or maliciously tampered with. In these cases, the MS-Office editor

recognizes those forged file as a normal file and opens it without a specific error expression process, so it is

essential to take steps to identify potential abnormalities in the internal structure of the MS-Office file.

Analysis and Detection of Malicious Data Hidden in Slack Space on OOXML-based Corrupted MS-Office Digital Files 153

4. Hidden Malicious Data Analysis and Detection on Corrupted MS-Office Files

4.1 Slack Space, Hidden Data and Corrupted CDH Detection

The MS-Office File Analyzer is a tool designed to detect abnormalities and corruption in MS-Office files.

It features a user-friendly interface implemented in Python, and can be used without requiring any additional

modules to be installed. When given an MS-Office file for inspection, the proposed analyzer automatically

checks the internal structure of the OOXML-based ZIP file format to determine whether the file is damaged

or not. And it also includes a feature to automatically detect hidden data as shown in Fig. 4.

To achieve this, the analyzer analyzes the internal structure of the MS-Office file saved in the OOXML-

based ZIP format, carefully examining the LFH and CDH header contents to efficiently detect any suspicious

hidden data. The implemented system consists of four modules: a ZIP file identification module, a ZIP file

structure analysis module, a ZIP file validation module, and a GUI module. With these modules, the MS-Office

File Analyzer can effectively detect and report any abnormalities or hidden data present in an input MS-Office

digital file.

Figure 4. Slack Space, Hidden Data and Corrupted CDH Detection Results

We discovered that slack areas in OOXML-based MS-Office files only exist in the Extra Field part of the

Local File Header (LFH) and Central File Header (CFH). Attackers can exploit the slack area to hide malicious

code or additional information in the file without it appearing in the local file header of a typical ZIP file. This

means that if an attacker exploits the slack area, they can hide malicious code or additional information in the

file without it appearing in the LFH of a typical MS-Office file. To resolve this issue, we developed a function

to automatically detect five types of damaged files as shown in Fig. 5.

Proposed software includes an automatic search function for slack space. When executed, it performs an

OOXML structure analysis on the input MS-Office files to check whether slack space exists in the CDH and

LFH headers. If hidden data is found, an alarm is displayed to notify the user. We also discovered that attackers

can add a specific length of data by modifying the internal structure of an OOXML-based MS-Office file. To

address this issue, we developed a module that can automatically detect any specific data that has been hidden

154 International Journal of Advanced Smart Convergence Vol.12 No.1 149-156 (2023)

in an MS-Office file after changing its size. By executing proposed software, users can prevent damage from

encryption or infection of digital files by malicious ransomware code that may be hidden in a file disguised as

a legitimate digital file. This provides a simple solution for general users to protect their files without requiring

specialized knowledge or training.

Figure 5. Inserted and Appended Hidden Data Detection Results

4.2 Implementation and Analysis Results

The proposed solution was implemented using the Python language, with the PyQT5 package used to

provide a graphical user interface. The tool is designed to analyze OOXML-based MS-Office files that have

been intentionally altered with malicious intent or are suspected to contain malicious code. Upon selecting a

file, the tool conducts an analysis, and the result is presented in a JSON file format. An example of this is

shown in Fig. 6 below. The implementation results indicate the practicality of the proposed solution and its

potential to enhance the security of digital documents.

To evaluate the effectiveness of the tool, we conducted an experimental test using ten malicious MS-Office

files obtained from the publicly available repository "Malicious File DB" provided by https://bazaar.abuse.ch/.

The analysis showed that the tool accurately detected 100% of the manipulated malicious files in terms of their

internal structure and slack space. These results demonstrate the reliability and robustness of the proposed

solution in detecting concealed ransomware code hidden in OOXML-based MS-Office files. However, further

testing and evaluation are needed to ensure the effectiveness and efficiency of the tool in real-world scenarios.

Continued research and development in this area are necessary to enhance the security of digital documents

and protect users from cyber-attacks.

Analysis and Detection of Malicious Data Hidden in Slack Space on OOXML-based Corrupted MS-Office Digital Files 155

Figure 6. Implementation and Analysis Results for MS-Office Digital File

5. Conclusions

In this paper, we analyzed the structure of OOXML-based MS-Office files, identifying how attackers can

exploit slack space to conceal malicious data and perform illegal corruption processes. We also proposed an

advanced mechanism for detecting hidden data in MS-Office files, even when the CDH header has been

intentionally deleted. To address these security risks, we designed and implemented a software tool for

detecting corruption attacks on OOXML-based MS-Office files. As a result, we designed and implemented a

software tool that can effectively detect corruption attacks on OOXML-based MS-Office files, enabling the

development of advanced systems or mechanisms for automatically detecting concealed ransomware code

hidden in these files.

The proposed mechanism and software represent significant contributions to the field of digital security and

have the potential to enhance the security of public MS-Office digital document. By providing a practical

solution for detecting them, we can enhance the security of public MS-Office digital documents and better

protect users from malicious attacks. However, further research and development are needed to improve the

robustness and efficiency of the proposed solution. This could involve exploring alternative approaches for

detecting hidden data or developing more sophisticated algorithms for analyzing the file structure. Additionally,

it may be necessary to evaluate the proposed solution in different scenarios and against more advanced attack

techniques to ensure its effectiveness and reliability.

Acknowledgment

This work is an extended version of tha paper published at the IJCC2023 conference [7]. And this work is

partially supported by the Basic Science Research Program through the National Research Foundation of

Korea (NRF) (No. 2021R1F1A1046954).

References

[1] Anghel, Catalin. “Digital Forensics – A Literature Review.” EEA Journal of Information and Communication

Technologies, vol. 2019, no. 1, 2019, pp. 23-27. DOI: https://doi.org/10.35219/eeaci.2019.1.05.

[2] Hassannataj Joloudari, J., Haderbadi, M., Mashmool, A., GhasemiGol, M., Shahab, S., and Mosavi, A. “Early

Detection of the Advanced Persistent Threat Attack Using Performance Analysis of Deep Learning.” arXiv e-

prints, 2020.

156 International Journal of Advanced Smart Convergence Vol.12 No.1 149-156 (2023)

[3] Alenezi, A., Atlam, H., Alsagri, R., Alassafi, M., and Wills, G. “IoT Forensics: A State-of-the-Art Review,

Challenges and Future Directions.” Proceedings of the 4th International Conference on Complexity, Future

Information Systems and Risk (COMPLEXIS 2019), 2019, pp. 106-115.

[4] "Office Open XML." Wikipedia, The Free Encyclopedia. Wikimedia Foundation, Inc. 11 September 2019. Web.

20 January 2023.

[5] "Zip (file format)." Wikipedia, The Free Encyclopedia. Wikimedia Foundation, Inc. 24 September 2019. Web. 20

January 2023.

[6] "Document File Formats: Microsoft Word Document (DOCX/DOC)." LEAD Technologies, Inc. Web. 20 January

2023.

[7] Na, S., and Lee, H.W. “Implementation of Malicious Data Analysis and Detection System Hidden in the Slack

Space of Corrupted OOXML-based MS-Office Digital Files”, Advanced and Applied Convergence Letters AACL

21 (9th International Joint Conference on Convergence, IJCC2023), pp.97-103, 2023.

