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Abstract 

 
It is significant to predict the performance degradation of complex electromechanical systems. 
Among the existing performance degradation prediction models, belief rule base (BRB) is a 
model that deal with quantitative data and qualitative information with uncertainty. However, 
when analyzing dynamic systems where observable indicators change frequently over time 
and working conditions, the traditional belief rule base (BRB) can not adapt to frequent 
changes in working conditions, such as the prediction of aeroengine performance degradation 
considering working condition. For the sake of settling this problem, this paper puts forward 
a new hidden belief rule base (HBRB) prediction method, in which the performance of 
aeroengines is regarded as hidden behavior, and operating conditions are used as observable 
indicators of the HBRB model to describe the hidden behavior to solve the problem of 
performance degradation prediction under different times and operating conditions. The 
performance degradation prediction case study of turbofan aeroengine simulation experiments 
proves the advantages of HBRB model, and the results testify the effectiveness and 
practicability of this method. Furthermore, it is compared with other advanced forecasting 
methods. The results testify this model can generate better predictions in aspects of accuracy 
and interpretability. 
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1. Introduction 

With the rapid development of technology, some complex electromechanical systems with 
high technical and high integration have been widely used in engineering practice. These 
electromechanical systems will be affected by various mechanical stresses and thermal stresses 
during operation, and their performance will continue to decline. However, some complex 
electromechanical systems are affected by factors such as high temperature, high speed, load, 
and impact due to the uncertainty of the working environment, these factors will accelerate the 
rapid decline of the performance of the entire system [1]. When the performance of the 
electromechanical system degrades and suddenly fails due to these factors in an unknown state, 
it may cause huge economic losses and destructive consequences, and bring irreparable 
adverse effects to the living environment. Therefore, the secure and reliable operation of the 
complex system has great significance to protect the life and property safety of human, and 
the social economy. So it is vital to study the health status and performance degradation of 
complex electromechanical systems. By predicting the performance degradation of the 
evaluation results, experts can determine the best maintenance scheme.  

In the field of forecasting, a large of researchers have put forward many methods ranging 
from simple linear regression to advance nonlinear forecasting [2]. Performance degradation 
prediction theory is becoming more and more mature, and the actual application effect of 
engineering is also improving. The existing performance degradation prediction modeling 
methods of complex electromechanical systems include the following three categories. 

1) Physical-model-based methods, including Kalman predictor[3], particle predictor[4], 
and strong tracking predictor[5] etc. This kind of method uses some engineering principles to 
build predictive models. First, the established physical model must be accurate, select the state 
or parameters that are able to reflect the systematic behavior, and then use the data to forecast 
the system behavior. Only in this way can these methods be very effective. However, due to 
the widespread non-linearity and uncertainty in physical models, accurate mathematical 
models are often difficult to obtain, which increases the difficulty of predicting and modeling 
the performance degradation of complex electromechanical systems. 

2) Qualitative-knowledge-based methods, such as expert system[6], Petri net[7] etc. Expert 
system (ES) can handle the uncertain information, and its reasoning process is interpretable 
and flexible. However, as we all know, the knowledge from experts in a specific field is usually 
inaccurate. Because of the dynamic complexity of expert systems and the limitations of expert 
knowledge, when meeting a new performance degradation prediction problem, the knowledge 
base is incomplete. In this case, methods based on qualitative knowledge have limited 
capabilities in predicting performance degradation and providing more robust problem solving.  

3) Data-driven methods, this kind of forecasting method has become a popular health 
management and forecasting method [8,9]. These methods are mainly aimed at building a data 
model, adjusting the internal parameters of the model by inputting training data samples, and 
making predictions by testing data samples. Nowadays, many prediction methods have been 
proposed to realize system behavior prediction, including improved autoregressive moving-
average-model (ARMA) methods [10], support-vector machine (SVM) [11-13], neural 
networks [14-15], etc. In general, data-driven methods have shown great advantages in some 
fields, but most of these methods belong to black box models and lack of interpretability. 
Therefore, it may be impossible to use this type of black box model in a prediction application 
system that requires systematic reasoning and provides an explanation of its results. In addition, 
the traditional data-driven methods need number of data for training are difficult to effectively 
deal with the performance degradation prediction modeling problem of complex 
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electromechanical systems. 
The prediction method based on logical rules is interpretable, and it can also enhance the 

system reliability. Based on this, Yang et al. [16] put forward a rule-based evidence reasoning 
approach, also called BRB system. It is compared with the IF-THEN rule base, the BRB 
method provides richer and truer solutions. Parameters and output of BRB system are 
comprehensible, and experts can intervene in its structural adjustment. At present, it has been 
applied to offshore systems, oil pipelines, multi-attribute decision analysis, etc [17-20]. 

However, when predicting complex industrial systems, the traditional BRB is not suitable 
for directly predicting the implicit behavior of the system. Zhou [21] et al proposed the HBRB 
prediction model in 2015 to address the above problems. 

At present, HBRB prediction method has been applied in the industrial field. Hu [22] et al. 
proposed a HBRB prediction model with multidimensional input for network security 
conditions. In the paper [23], it is found that there are many factors affecting the implicit 
behavior of gyroscope in navigation platform system, but the relationship between them is 
difficult to establish, so a delay implicit confidence rule base model considering the delay 
history information is proposed. 

The performance of an aeroengine is an hidden behavior, and the observed data of 
aeroengine operation can be used to predict its performance. Therefore, this paper put forward 
a hidden belief rule base (HBRB) prediction model. The main contributions are as follows: 

1. In view of the problem that traditional BRB can not adapt to frequent changes in aero 
engine performance when analyzing the observable index changes frequently with time and 
working conditions, a HBRB prediction model for aeroengine performance degradation 
considering hidden behavior is proposed. 

2. The HBRB prediction model regards the performance of aeroengine at different times as 
the hidden behavior, and the working condition as the observable index of the model to 
describe its hidden behavior, which solves the problem of performance degradation prediction 
at different times and under different working conditions. 

The remaining structure of this paper is as follows. In Section Ⅱ, introduce the traditional 
BRB model and performance degradation modeling. In Section Ⅲ, a performance degradation 
prediction model considering working conditions is put forward. In Section Ⅳ, conduct 
simulation experiment. In Section V, summarize the work of this paper. 

2. Problem Formulation 
Since the performance of aeroengine is a kind of implicit behavior, it is impossible to predict 
its performance directly, so this paper proposes an aeroengine performance degradation 
prediction method considering operating conditions. The model first regards the aero engine 
performance ( )x t at time t  as an hidden behavior, and uses operating conditions as an 
observable index tO  of performance ( )x t  to solve the problem of performance degradation 
prediction under different times and operating conditions. In the newly proposed HBRB 
prediction model, usually experts provide the initial parameters, which may be inaccurate, 
resulting in the decline of prediction results. So this paper adopts the projection covariance 
matrix adaption evolution strategy (P-CMA-ES) algorithm to optimize the HBRB 
parameters. Using two public simulation data sets published by NASA to construct case 
studies to testify the model effectiveness when observable indicators change frequently over 
time and working conditions. The HBRB model is interpretable and transparent in the model 
parameters and prediction results. In order to test the model advantages, compareing with 
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several other mature forecasting methods, such as BP neural network, convolution neural 
network (CNN), fuzzy C-means clustering (FCM) and hidden Markov model (HMM). 

This rest of this section will briefly introduce the traditional BRB model and the basic 
principle of performance degradation prediction modeling of complex electromechanical 
systems. 

2.1 Brief description of BRB model in HBRB modeling 
For the sake of establishing an hidden behavior prediction model, constructing a basic BRB 
model. The confidence rules are described as follows: 

1 1, , ,

: ( 1)  , ( )

{( , ), , ( , ), ( , )}
k j

k N N k D k

k k

R If x t is D Then x t is

D D D

with rule weight and attribute weight

β β β

θ δ

−


    (1) 

where ( 1,..., )kR k L=  represents kth belief. ( 1)x t −  represents the system behavior and is the 

prerequisite attribute of BRB at 1t −  time. kθ  is the kth  rule weight. jD  is the referential 

value of ( 1)x t −  and jD D∈ , { }1 2, , ..., ND D D D=  is a set of the prerequisite values of ( 1)x t − . 

kδ  is the prerequisite attribute. Because tn the BRB model only has a input, the premise 

attribute weight is 1kδ = . ( 1, ..., )jD j N=  represents the jth  consequent. 

, ( 1, 2, ..., , 1, 2, ..., )j k j N k Nβ = =  represents the confidence relative to the jth  evaluation result 

jD . , ( )D k tβ  is the belief that is not assigned to any jD , which can reflect the uncertainty of 

expert knowledge. In addition , ,
1

( ) ( ) 1
N

D k j k
j

t tβ β
=

+ =∑ . 

The belief rules in (1) can use the following four methods to establishe: 1) Extracte belief 
rules from expert experience, 2) Analyse existing historical data to extracte belief rules, 3) If 
available, use the previous belief rule base, 4) Generate rules randomly without any prior 
knowledge. 

Therefore, the prediction model can be expressed as the following formula: 
     1( 1) ( , ( ))x t g x tϕ+ =      (2) 
Equation (2) above is the system equation, where g  represents the nonlinear mapping 

function, 1ϕ  represents the parameter vector, and 1 1 2 1,1 , ,1 ,[ , , ..., , , ..., , , ..., ]T
N N N D D Nϕ θ θ θ β β β β= . 

For the sake of predicting the future behavior of complex electromechanical equipment, 
knowing the current information is necessary. That is, the current information should be 
observable. Therefore, the prediction model shown in (2) can't predict the hidden behavior. 
For the sake of settling this problem, a new HBRB prediction model is proposed. 

2.2 HBRB prediction model  
When analyzing the complex electromechanical system, because the system indexes can not 
be completely tested by sensors, such as the performance of aeroengine, so the traditional BRB 
model can not fully mine the information in the data. Therefore, a BRB prediction model 
considering hidden behavior is proposed. Its functions are as follows. 

As described above, the hidden behavior ( )x t  can be reflected by observation ( )O t , 
assuming that the observation equation is: 
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  2( ) ( , ( ), ( ))O t y x t tϕ η=      (3) 
The above equation is the observation equation. Where y  represents the nonlinear 

mapping function to be determined, which means the relationship between hidden behavior 
and observed indicators. 2ϕ  represents the parameter vector. ( )tη  represents the part of the 
test data contaminated by external factors. ( )O t  represents the observation information at time 
t , and ( ) [ (1), (2),..., ( )]TO t o o o t= . In particular, we assume that ( )tη  obey the Gaussian 
distribution. Usually experts give initial parameter vectors, which may be inaccurate. In order 
to achieve accurate prediction, it is crucial to optimize these parameters. 

3. Prediction model of brb considering hidden behavior 
This section first introduces the objective function, and then introduces the reasoning process 
of HBRB model. Finally, using P-CMA-ES algorithmto optimize these parameters. 

3.1 The construction process of likelihood function structure 
When the observation information ( )o t  is a one-dimensional vector, it can be regarded as a 

scalar. Let ( ) [ (1), (2),..., ( )]TO t o o o t= , the likelihood function is constructed as follows: 

       
2

( ) ( ( ) | ( 1))
T

t

L f o t O t
=

Ω = −∏    (4) 

where Ω indicates the parameter vector, 1 2[ , ]T Tϕ ϕΩ =  is consist of rule weight kθ , belief 
degree kβ and parameters used by (2). 

(1) Calculation process of ( ( ) | ( 1))f o t O t −  
It can be found from (4), which ( ( ) | ( 1))f o t O t −  requires to be calculated. The calculation 

process of ( ( ) | ( 1))f o t O t −  is given below, that is: 

      
1

( )

( ) ( )
( ( ) | ( 1)) ( ( ) | ( )) ( ( ) | ( 1))

NU D

x t U D
f o t O t f o t x t f x t O t

=

− = −∑     (5) 

where ( )NU D  represents the utility value of ( 1, 2,..., )jD j N= . 
(2) Calculation process of ( ( ) | ( 1))f x t O t −  

For the sake of determine (5), ( ( ) | ( 1))f x t O t −  can be calculated as follows: 

1

( )

( 1) ( )

( ( ) | ( 1)) ( ( 1) | ( 1)) ( ( ) | ( 1))
NU D

x t U D

f x t O t f x t O t f x t x t
− =

− = − − −∑  (6) 

Substituting (6) into (5) yields the following equation, that is: 

1 1

( ) ( )

( ) ( ) ( 1) ( )

( ( ) | ( 1)) ( ( ) | ( )) ( ( 1) | ( 1)) ( ( ) | ( 1))
N NU D U D

x t U D x t U D

f o t O t f o t x t f x t O t f x t x t
= − =

− = − − −∑ ∑  (7) 

In formula (7), ( ( 1) | ( 1))f x t O t− −  can be calculated by the following formula, that is: 

       
( ( 1) | ( 1)) ( ( 1) | ( 1), ( 2))

( ( 1), ( 1) | ( 2))
                                =

( ( 1) | ( 2))

f x t O t f x t o t O t
f x t o t O t

f o t O t

− − = − − −

− − −

− −

    (8) 

Substituting (6) and (7) into (8) gives the following expression, that is: 
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(3) Calculation process of ( ( ) | ( 1))f x t x t −  
where ( ( ) | ( 1))f x t x t −  can be calculated by: 

        

1

( ) ( )
( ( ) ( ) | ( 1))

( ( ) ( ))

j D

j N

j D
i

t t
f x t U D x t

t t

β β

β β
=
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+∑
    (10) 

It should be noted that ( )j tβ  represents the lower bound likelihood value relative to jD  

and ( ( ) ( ))j Dt tβ β+  represents the upper bound likelihood value relative to jD . these settings 
can reflect the uncertainty of the evaluation results. 

(4) Reasoning process based on ER rules 
In (6)-(9), you need to know ( ( ) | ( 1))f x t x t − , and its calculation process is as follows. 

First, ( )x t  is expressed as: 
                  ( ( )) {( , ( )), 1, 2,..., }k kS x t D a t k N= =     (11) 

where 

      

1

1

1 1

( ) ( )( )
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k
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where ( )jU D  represents the utility value of ( 1, 2,..., )jD j N= . 

In order to determine (10), a confidence level needs to be obtained ( )j tβ , which can be 

calculated by ER rule [24-26]. Where ( )k tω  represents the activation weight, it is expressed 
as: 
 

1

( ( ))
( )

( ( ))

k k
k N

l l
l

t
t

t

δ

δ

θ α
ω

θ α
=

=

∑
   (13) 

The model output can be expressed as: 
             ( ( )) {( , ( )), ( , ( )), 1, 2,..., }j j DS x t D t D t j Nβ β= =     (14) 

where ( )j tβ  is the belief of jD  at time t, and ( )D tβ  is the belief not set to any jD , which 
reflects the uncertainty of the evaluation process. 
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When ( )o t  is multidimensional observation information, 1 2( ) [ ( ), ( ),..., ( )]T
no t o t o t o t= , 

assuming that 1 2, ,..., no o o is independent, the following formula can be obtained. 

           
1

( ( ) | ( )) ( ( ) | ( ))
n

j
j

f o t x t f o t x t
=

=∏     (18) 

When ( )o t  is calculated, the likelihood function shown in (4) is obtained, the calculation 
and implementation process of the likelihood function will be introduced below. 

3.2 Objective function to be optimized of HBRB model 
By calculating (4)-(18) can get the likelihood function shown in (4), and constructing the 
following nonlinear objective function: 
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∑



 ，

   (19) 

where the definition of parameters kθ , ,j kβ  and ,D kβ  has been given in (1), 2( ) 0ceq ϕ =  and 

2( ) 0c ϕ ≤  represent the equality constraints and inequality constraints satisfied by 2ϕ  

respectively, and the specific forms of 2( )ceq ϕ  and 2( )c ϕ  can be determined according to the 
equation (3). 

3.3 Parameter optimization of HBRB prediction model based on P-CMA-ES 
P-CMA-ES [27-29] algorithm is used to optimize the relevant parameters in this paper. 

The specific steps are as follows: 
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(1) Set initial values: 
The initial population is generated by taking a solution in the solution space as the central 

point, also known as the expectation. Give the initial average 0 0m = Ω , initial covariance 
matrix 0C , initial step size σ , overall size λ . 

(2) Generate initial population: 
The initial parameter vector 0Ω  of the HBRB model is selected as the expectation. The 

resulting population is as follows: 
                   1 (0, ),  1,...,  g g g g

k m C for kσ λ+Ω + =      (20) 

where 1g
k
+Ω  is the ith  solution of the generation ( 1)g th+ , m is the overall mean, σ  is the 

step size,   is normal distribution, gC  is the covariance matrix, its geometric meaning is the 
elliptic distribution of the population in the solution space. 

(3) Projection operation: 
The solution produced from the sampling operation can't satisfy the constraints. So a 

projection operation is put forward. The projection operation is obtained from the following 
formula. 

    

1 1 1

1

(1 ( 1) : ) (1 ( 1) : ) ( )

                                             (1 ( 1) : )

g g T T

k e e k e e e e e

g

k e e e

n j n j n j n j A A A

n j n j A

+ + −

+

Ω + × − × = Ω + × − × − × ×

×Ω + × − × ×
  (21) 

The above formula is to project the equality constraints in 1g
k
+Ω  one by one, and finally 

map them to the feasible domain hyperplane. Compared with other methods, projection 
operation uses analytical expression to solve equality constraints, which has high operation 
efficiency. 

(4) Select operation: 
Select some optimal solutions with better fitness value from the population. The larger the 

value, the better the solution. And by using the weighted average method to update the new 
center point of the population. 

(5) Reorganization operation: 
Update the expectations and guide the population to move towards a better solution. The 

update method is obtained by the following formula. 

             1 1
:

1

g g
i i

i
m

ε

λγ+ +

=

= Ω∑     (22) 

where iγ  is the weight of the ith  solution. λ  is the number of solutions. 1
:
g
i λ
+Ω  is the ith  

solution of the gth  generation. 
(6) Update C  operation: 

The covariance matrix C  is the equal probability density elliptic surface of the population 
distribution in the solution space. The initial 0C  is the identity matrix I . In the process of 
evolution, the direction of the long axis of the covariance matrix always points to the optimal 
solution, the change of direction controls the evolutionary trend, and the length of the long 
axis controls the search range. The covariance matrix C  is updated refer to (23). 
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 (23) 
where 1α  and εα  denote the learning factor. q  denotes the evolution path. The rule is 
updated as below: 

       ( ) ( )
ε
γ

η

− +
+

=

 
  
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−= − + − ∑
12 1
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mean mean1 2
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g g
q q q i g

i
q a q a a   (24) 

where 1qα ≤  denotes the evolution path parameter. The step size η  is updated refer to (25). 
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ηη
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η η
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where dη  is the damping coefficient, ( )0,E  I  is the expectation of Euclidean paradigm 

( )0, I . qη  is the conjugate evolution path. ηa  is the qη  parameter. qη  update reference 
following formula. 

         ( ) ( ) ( )ε

η η η η η γ
η

− +−+

=

 
  
 

−= − + − ∑
12 1 1

1 2

1

mean mean1 2
g ggg g

i g
i

q a q a a C     (26) 

Repeat steps (1)-(6) until the accuracy requirements are met, and then output the best 
parameters bestΩ  of HBRB model. 

3.4 Hidden behavior prediction algorithm steps by HBRB model 
To sum up, the prediction process of HBRB model is as follows. 

Step 1: Set the initial parameters 0x  and 0Ω , and the parameters in 0Ω  meet the 
constraints shown in (19). 

Step 2: When the observation information ( ) [ (1), (2),..., ( )]TO t o o o t=  arrives, when ( )o t  
is a one-dimensional vector, use (5)-(17) to calculate the likelihood function as shown in (4). 
When ( )o t  is a multi-dimensional vector, use (5)-(18) to establish the likelihood function. 

Step 3: Calculate the optimal parameters through P-CMA-ES algorithm. The steps are as 
follows in Fig. 1. 

Step 4: The HBRB prediction model is established to predict the hidden behavior. 
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Fig. 1. Optimization algorithm specific steps 

4. Case Studies 
In this section, turbofan engine simulation test will be constructed to examine the effectiveness 
of the put forward HBRB model. 

Turbofan aeroengine is one of the important components of aircraft, which has great 
significance to the stable operation of aircraft. The structure diagram of turbofan aeroengine 
is shown in Fig. 2. Due to the existence of complex system characteristics, such as strong 
nonlinearity, non-stationarity and uncertainty of turbofan aeroengines, condition monitoring 
based on multi-source heterogeneous data has become a very challenging task. 

 
Fig. 2. The structure diagram of turbofan aeroengine  
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4.1 Data set description 
This section uses performance parameter measurements from turbofan engine general test data 
to evaluate the performance degradation prediction status, which is NASA's public data. 
Including four sets of data, and each set of data contains the training and testing set. The 
training set contains complete monitoring data of several turbofan engines, and each turbofan 
engine has recorded monitoring data of all flight cycles from normal operation to failure. The 
monitoring data of each flight cycle includes 24 monitoring parameters, three of which are 
operating conditions. The test set contains incomplete data for several turbofan engines, and 
the termination state of each engine in the test set is not a performance failure state. The four 
groups of data in the public test data set have their own characteristics: there is only 1 working 
condition in group 1 and group 3, and there are 6 working conditions in group 2 and group 4. 
There is only 1 failure mode for group 1 and group 2, and there are 2 failure modes for group 
3 and group 4. 

4.2 Data preparation 
This paper uses the "train_FD001" and "train_FD002" files provided by the dataset to build 
the performance degradation curve. In "train_FD001", 21 sensor parameters are continuously 
monitored under single working condition, and the turbofan engine is only affected by time 
factor. In "train_FD002", 21 sensor parameters are continuously monitored under variable 
working conditions, and the turbofan engine is affected by time factors and working conditions, 
variable operation refers to the mode of aeroengine switching according to the requirements 
or randomly under multiple operating conditions, under this condition, the uncertainty 
information of aeroengine will greatly increase. When the working modes are constantly 
switched, the aeroengine needs to adjust its flight parameters at any time. In many cases, it is 
overloaded, and the working conditions are extremely complicated, which will accelerate the 
performance degradation of the aeroengine. The time series length of each turbofan engine 
unit is different. "Column FD001" and "column FD002" include 100 monitoring units and 260 
monitoring units respectively. "FD001 train" and "FD002 train" include 20631 and 53759 
engine cycles, respectively. All turbofan engine units are reduced from a slight wear condition 
to a failure threshold, each turbofan engine records monitoring data for all flight cycles from 
normal operation to failure. The monitoring data of each flight cycle includes 24 monitoring 
parameters, three of which are operating conditions, namely Height, Mach number, Throttle 
Rotation transformer Angle, which are used as the input of the observation equation in this 
paper. The test set contains incomplete data of multiple turbofan engines, and the termination 
state of each engine in the test set is not a performance failure state. One aeroengine unit data 
in "train_FD001" and "train_FD002" provided by each selected data set is used for 
performance degradation prediction modeling, and the results of health status assessment are 
used as the input of HBRB model, that is, the performance of aeroengine is regarded as hidden 
behavior and input into HBRB model. 

4.3 Prediction of aeroengine performance degradation with hidden behavior 
under single working condition 

4.3.1 The HBRB prediction model 
Single condition operation means that the aeroengine works under an operating setting. Under 
this operating condition, the main reason that affects the degradation speed of the aeroengine 
is the time factor. And some external factors lead to some uncertain information in the process 
of aeroengine operation and data acquisition. 
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An aeroengine unit data in "train_FD001" is used for performance degradation prediction 
modeling, and the input of this model is shown in Fig. 3. 

 
Fig. 3. Input of performance degradation prediction model 

 
For the sake of constructing the aeroengine prediction model, four reference values are 

selected for the performance degradation factor, which are Small (S), Medium (M), Large (L) 
and Very Large (VL). The above reference points need to be quantified, the results are given 
in Table 1. 

Table 1. Reference value of performance degradation factor 
Semantic value S M L VL 

Quantity value 0 0.25 0.75 1 

 
In order to predict the performance of aeroengine, it is crucial to build HBRB model. The 

kth  rule is described as: 

1 1, , ,

,

: ( )  , ( 1) {( , ), , ( , ), ( , )}k k k N N k D k

k i k

R If x t is D Then x t is D D D

with rule weight and attribute weight

β β β

θ δ

+ 

 (27) 

Among them, ( )x t  represents the performance degradation value of the current aeroengine, 
( 1)x t +  represents predicted performance degradation value of the aeroengine at the next time, 

and the range is [0,1]. The larger the value, the more serious the performance degradation. 
( )1, 2, ,kR k L=   stands for rule k  and L  stands for the number of rules. 

{ }( )1k ND D D D D∈ = ， ，  represents the prediction result of rule k , and also represents the 
division of reference level of aeroengine health status. For example, it can be divided into four 
levels: excellent, good, medium and poor. D  represents the set of levels. ( ), 1, 2, ,j k j Nβ =   

is the belief degree of the jth  result in rule k , and N  is the number of results. ,D kβ  

represents residual confidence and represents the ignorance of expert knowledge. kθ  and iδ  
are rule weight and premise attribute weight respectively. 

The observation information in this paper is three sensor parameters representing different 
working conditions, namely Height, Mach number, Throttle Rotation transformer Angle. As 
shown in Fig. 4. 
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Fig. 4. Data collection physical map 

 
The initial parameters are shown in Table 2 and Table 3. The initial belief given by expert 

experience is given in Table 2. It is assumed that the initial values of kθ  are all 1. The initial 
values of the observed parameters are given in Table 3. 
 

Table 2. Initial rule weight and belief of HBRB prediction model 
Rule Rule Weight ( )x t  ( 1)x t +  distribution 

1 1 S ( ) ( ) ( ) ( ) ( ){ }1 2 3 4,0.15 , ,0.5 , ,0.15 , ,0.18 , ,0.02D D D D D  

2 1 M ( ) ( ) ( ) ( ) ( ){ }1 2 3 4,0 , ,0 , ,0 , ,0 , ,1D D D D D  

3 1 L ( ) ( ) ( ) ( ) ( ){ }1 2 3 4,0.1 , ,0 , ,0.4 , ,0.5 , ,0D D D D D  

4 1 VL ( ) ( ) ( ) ( ) ( ){ }1 2 3 4,0 , ,0.1 , ,0.3 , ,0.5 , ,0.1D D D D D  

 
Table 3. Initial parameters of observation equation 

Parameter 1ϕ  2ϕ  σ  

Initial value 0.001 0.0002 0.002 

 
When the above parameters in Table 1-3 are given, can gain initial parameter vector 0Ω . 

Then, the initial HBRB parameters are optimized. 
Because the number of aeroengine cycles in train_FD001 is 195, that is, the total data 

sample in this paper is 195, this paper takes the 45 as testing samples. Based on the initial 
prediction model and training data, the parameter 0Ω  is trained. Table 4 shows the rule weight 
and belief after training. Table 5 shows the observation equation parameter after training. 

 
Table 4. Rule weight and confidence of HBRB prediction model after training 

Rule Rule 
Weight 

( )x t  ( 1)x t +  distribution 

1 0.5505 S ( ) ( ) ( ) ( ) ( ){ }1 2 3 4,0.8888 , ,0.0204 , ,0.0429 , ,0.0037 , ,0.0443D D D D D  
2 0.6132 M ( ) ( ) ( ) ( ) ( ){ }1 2 3 4,0.3382 , ,0.1925 , ,0.2048 , ,0.0577 , ,0.2068D D D D D  
3 0.7715 L ( ) ( ) ( ) ( ) ( ){ }1 2 3 4,0.1631 , ,0.0904 , ,0.1477 , ,0.3837 , ,0.2150D D D D D  
4 0.1787 VL ( ) ( ) ( ) ( ) ( ){ }1 2 3 4,0.0834 , ,0.1340 , ,0.2866 , ,0.2754 , ,0.2205D D D D D  
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Table 5. The parameters of observation equation after training 
Parameter 1ϕ  2ϕ  σ  

Initial value 0.0014 0.00021 0.0017 
 

After training, the last 45 groups of data are used to verify the HBRB prediction model. In 
order to demonstrate the stability of the model, ten prediction experiments are conducted, each 
of which uses the same data. The results are shown in Fig. 5, it is a comparison between the 
trained HBRB prediction model and the test data. The average value is 0.0057 and the variance 
is 66.1032  10−× . It can be seen from the results in Fig. 5 that HBRB model has a good 
prediction effect on aeroengine. 

 

 
Fig. 5. Prediction results of HBRB model 

 
As can be seen from Fig. 5, the values of the ten experiments all fitted, indicating that the 

HBRB prediction model can predict the aeroengine performance stably and accurately under 
a single working condition. 

4.3.2 Comparison test verification under single working condition 
For the sake of examining the model superiority, other models are used for comparison. The 
comparison models include initial BRB, BP neural network, CNN, FCM and HMM. The mean 
square error (MSE) can indicate the performance of the algorithm. Fig. 6 shows the specific 
results. 

According to the analysis of the simulation Fig. 6, the overall volatility of the 10 tests of 
BP neural network and CNN is very small, but it can't simulate the test data well. The overall 
trend of HMM gradually decreases, deviating from the actual value of aero-engine. The whole 
FCM curve fluctuates greatly, which can't reflect the actual situation well. The initial BRB 
curve does not follow the test data well. The specific mean square error is shown in Table 6 
below. 
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Fig. 6. Test results of other models under single working condition 

 
Table 6. Test results of other models under single working condition 

 HBRB BP CNN FCM HMM Initial BRB 
1 0.0091 0.1380 0.0520 0.0878 0.4434 0.0506 
2 0.0060 0.1377 0.0235 0.0727 0.4414 0.0467 
3 0.0055 0.1402 0.0674 0.0857 0.4305 0.0511 
4 0.0026 0.1376 0.0409 0.0752 0.4346 0.0503 
5 0.0050 0.1390 0.0606 0.1242 0.4488 0.0516 
6 0.0094 0.1358 0.0341 0.1027 0.4457 0.0374 
7 0.0073 0.1387 0.0375 0.0670 0.4614 0.0481 
8 0.0023 0.1471 0.0168 0.0685 0.4426 0.0519 
9 0.0064 0.1388 0.0262 0.0684 0.4613 0.0504 

10 0.0035 0.1413 0.0420 0.0949 0.4400 0.0497 
average 0.0057 0.1394 0.0401 0.0847 0.4450 0.0488 
variance 6.1032E-06 9.5107E-06 2.6287E-04 3.4162E-04 1.0158E-04 1.8495E-05 

4.4 Hidden behavior prediction of aeroengine performance degradation under 
variable operating conditions 
In the same way as the performance degradation prediction under single working condition, 
an aeroengine unit data in "train_FD002" is used for performance degradation prediction 
modeling, and the results of health state assessment are used as the input of HBRB model. The 
performance degradation factor ( )x t  and observation information vector are input into the 
HBRB model, and the algorithm flow steps 1-4 are used for modeling and optimization. There 
are 271 aeroengine cycles in "train_FD002", so 50 test samples are set, and in order to 
demonstrate the stability of the model, ten prediction experiments are conducted, each of 
which uses the same data. It can be seen from the results in Fig. 7 that HBRB model has good 
predictability. According to statistics, the average value of 10 experiments is 0.0014 and the 
variance is 71.0440  10−× . 
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Fig. 7. Prediction results of HBRB model 

 
As can be seen from Fig. 7, the values of each experiment fit well with the original 

performance values. The trend of HBRB prediction results is very similar to the original 
performance trend, which indicates that the HBRB prediction model can predict the 
aeroengine performance well under varying working conditions. 

For the sake of examining the advantage of this method, which is compared with initial 
BRB, BP neural network, CNN, FCM and HMM model. Fig. 8 shows the specific 
experimental results. 

 
Fig. 8. Test results of other models under working-condition division 

 
According to the analysis of simulation Fig. 8, the overall trend of BP is similar to the 

actual value, indicating that the performance of aviation act tends to deteriorate in winter, but 
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it is far from the actual value. The overall trend of Hidden Markov Model (HMM) gradually 
decreases, which deviates from the actual situation of aeroengine. The overall fluctuation of 
FCM curve is large, which can not well reflect the actual situation. The overall change trend 
of 10 groups of tests of CNN and Initial BRB is not obvious, and it can not greatly reflect the 
performance degradation state of aeroengine. The specific mean square error is shown in 
Table 7 below. 
 

Table 7. Test results under working conditions of other models 
 HBRB BP CNN FCM HMM Initial BRB 

1 0.0019 0.1212 0.0816 0.2228 0.3809 0.0380 
2 0.0011 0.0964 0.0826 0.2543 0.3350 0.0972 
3 0.00083 0.0926 0.0770 0.2391 0.3837 0.0804 
4 0.0017 0.0968 0.0855 0.1390 0.3396 0.0623 
5 0.0014 0.0910 0.0792 0.1498 0.4130 0.0588 
6 0.0017 0.1168 0.0794 0.1115 0.4031 0.0395 
7 0.0012 0.1315 0.0642 0.1534 0.4072 0.1178 
8 0.0013 0.1088 0.0736 0.2503 0.3848 0.0051 
9 0.0016 0.0574 0.0802 0.2391 0.4040 0.0366 

10 0.0015 0.1096 0.0529 0.1186 0.3907 0.0866 
average  0.0014 0.1022 0.0756 0.1878 0.3842 0.0622 
variance 1.0440E-07 4.2427E-04 9.8086E-05 0.0034 7.3014E-04 0.0011 

It can be seen from the specific MSE values in Table 7 that HBRB model solves the 
problem of unstable performance curve prediction modeling caused by frequent switching of 
working conditions, which reflects the advantages of this method. 

5. Conclusion 
In this paper, an aeroengine performance degradation HBRB prediction model considering 
hidden behavior is proposed. In this model, the performance of aeroengine is regarded as 
hidden behavior, and the working state is regarded as the observable index of HBRB model to 
describe its hidden behavior, which can solve the problem of performance degradation 
prediction in different time and working states. Taking the simulation experiment of turbofan 
engine as an example, two examples of performance degradation prediction of turbofan engine 
system under single and variable operating conditions are established. For the sake of gaining 
the optimal parameters of HBRB model, using P-CMA-ES to optimize the model parameters. 
Finally, by comparing with other models, the superiority of HBRB model is proved, and its 
results can produce better prediction accuracy, which verifies the effectiveness and 
practicability of this method. This method has a wide engineering application prospect. 

The model is also applicable to other systems, such as welding robot systems. In the future 
work, how to establish a prediction model that is closer to the actual engineering is still a 
problem that we need to solve. 
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