• Title/Summary/Keyword: hepa1c1c7

Search Result 84, Processing Time 0.023 seconds

Induction of Quinone Reductase Activity by Stilbene Analogs in Mouse Hepa 1c1c7 Cells

  • Heo, Yoen-Hoi;Kim, Sang-hee;Park, Jae-Eun;Jeong, Lak-Shin;Lee, Sang-Kook
    • Archives of Pharmacal Research
    • /
    • v.24 no.6
    • /
    • pp.597-600
    • /
    • 2001
  • Based on the potential cancer chemoprebentive activity of resveratrol, a trihydroxystilbene with the induction of quinone reductase activeity this study was designed to determine if stilbene-related compounds were inducers of phase ll detoxifying metabolic enzyme quinone reductase (QR) in the mouse hepatoma Hepa 1c1c7 cells. Among the thirteen compounds tested, several compounds including 3,4,5,3',5'-pentamethoxy-trans-stibene were found to potentially induce QR activity in this cell line. In addition, substitution with 3-thiofurane ring instead of phenyl ring in the stilbene skeleton also exhibited potential induction of QR activity. This result will give primary information to design the potential inducers of QR activity in the stilbene analogs.

  • PDF

Effects of Artemisia capillaris Methanol Extract on CD3+, CD4+, CD8+ and TNF-${\alpha}+$ Splenic Cells in Tumor Cells Inoculated Mice (종양 유발 마우스의 CD3+, CD4+, CD8+ 및 TNF-${\alpha}+$ 비장세포에 인진쑥 methanol 추출물이 미치는 영향)

  • Kim, Hong-Tae;Ku, Sae-Kwang;Kim, Ju-Wan;Jin, Tae-Won;Lim, Mee-Kyung;Kim, Ji-Eun;Do, Yoon-Jung;Yeo, Sang-Geon;Jang, Kwang-Ho;Oh, Tae-Ho;Lee, Keun-Woo
    • Journal of Veterinary Clinics
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • The Artemisia capillaris THUNB is a perennial herb that belongs to the family Compositae spp and probably the most common plant among the various herbal folk remedies being used in the treatment of abdominal pain, hepatitis, chronic liver disease, jaundice and coughing in Korea. Recently the biological and pharmacological actions of herb have been studied well such as antibacterial, antidiabetic and antitumor activities. This experiment was conducted to investigate antitumor and immunomodulatory effects of Artemisia capillaris extracts against Hepa-1c1c7 and Sarcoma 180 cancer cells in in vivo experimental tests. In in vivo experimental tests using 210 ICR mice, based on flow cytometry, CD3+, CD4+, CD8+ and TNF-${\alpha}+$ splenocytes were significantly (p<0.05) reduced in the Hepa-1c1c7 and Sarcoma 180 inoculated vehicle controls, HP and SP, compared to those of the intact vehicle control on both the $28^{th}$ day and the $42^{nd}$ day, respectively. These decreases of CD3+, CD4+, CD8+ and TNF-${\alpha}+$ cells induced by tumor inoculations were significantly (p<0.05) inhibited by mACH treatment regardless of the type of experiments and tumor cells inoculated. The results suggest that Artemisia capillaris methanol extracts have prominent antitumor effects on the cancer cell lines Hepa-1c1c7 and Sarcoma 180.

Protective Effect of Allomyrina dichotoma Larva Extract on tert-butyl Hydroperoxide-induced Oxidative Hepatotoxicity

  • Lee, Kyung-Jin;Lee, Jong-Bin
    • Korean Journal of Environmental Biology
    • /
    • v.27 no.2
    • /
    • pp.230-236
    • /
    • 2009
  • An extract of Allomyrina dichotoma larva (ADL), one of the insects used most frequently in traditional Chinese medicine for the treatment of liver diseases such as hepatocirrhosis and hepatofibrosis, was assessed for antioxidant bioactivity in this study. In the current work, we have investigated the protective effects of ADL extracts on tert-butyl hydroperoxide (t-BHP)-induced hepatotoxicity in cultured hepa1c1c7 cells and in the mouse liver. The treatment of the hepa1c1c7 cells with ADL extracts induced a significant reduction of t-BHP-induced oxidative injuries, as determined by cell cytotoxicity, lipid peroxidation (LPO) and reactive oxygen species contents, in a dose-dependent manner. Moreover, ADL extracts evidenced a protective effect against t-BHPinduced oxidative DNA damage, as revealed by the results of the Comet assay in hepa1c1c7 cells. ADL extracts also protected against hydroxyl radical-induced 2-deoxy-d-ribose degradation by ferric ion-nitrilotriacetic acid and $H_2O_2$. In addition, ADL extracts were shown to be able to quench 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radicals. Our in vivo study revealed that ADL extracts pretreatment applied prior to t-BHP administration significantly prevented an increase in the serum levels of hepatic enzyme markers and reduced LPO in the mouse liver in a dose-dependent manner. Taken together, these results suggest that the protective effects of ADL extracts against t-BHP-induced hepatotoxicity may be attributable, at least in part, to its ability to scavenge free oxygen radicals, and to protect against DNA damage due to oxidative stress.

Induction of Quinone Reductase Activity in Hepatoma Cells by Paprika (Capsicum annuum L.) (파프리카 추출물이 quinone reductase 유도활성에 미치는 영향)

  • Yu, Mi-Hee;Lee, Hyo-Jung;Im, Hyo-Gwon;Lee, Syng-Ook;Lee, In-Seon
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.5
    • /
    • pp.707-711
    • /
    • 2006
  • Phase 2 enzymes are transcriptionally induced by a wide variety of chemical agents and natural products, and their induction plays a critical role in protection against chemical carcinogens and other toxic xenobiotics. The activity of the methanol extract and fractions of paprika (Capsicum annuum L.) was examined in murine Hepa1c1c7 cells for the induction of nicotinamide adenine dinucleotide (phosphate) NAD(P)H/quinone reductase (QR). The ethyl acetate (EtOAc) fraction induced QR activity in a dose-dependent manner in the concentration range of 10 to $500\;{\mu}g/mL$ with a maximum of a 3.3-fold increase in induction. The EtOAc fraction also showed high QR induction potency in Ah-receptor-defective mutant of Hepa 1c1c7 cells ($BP^rcl$ cells), which indicates that this fraction is a monofunctional inducer of QR. These results suggest that useful cancer chemopreventive materials could be isolated from EtOAc fraction of Paprika.

The Expression of Hypoxia Inducible Factor-1 $\alpha$ by Desferrioxamine Induces Radioresistance in Mouse Hepatoma Cell Line (쥐의 간암 세포에서 Desferrioxamine에 의해 유도된 Hypoxia Inducible Factor-1 $\alpha$가 방사선 저항성을 초래함)

  • Kwon, Byung-Hyun
    • Radiation Oncology Journal
    • /
    • v.22 no.3
    • /
    • pp.217-224
    • /
    • 2004
  • Purpose: It is well known that the radiosensitivity of tumor cells can be significantly reduced under hypoxic conditions. Hypoxia-inducible factor-1 $\alpha$ (HIF-1 $\alpha$) plays a pivotal role in the essential adaptive responses to hypoxia. Therefore this study investigated the relationship between HIF-1 $\alpha$ expression and radiosensitivity. M Mouse hepatoma cell line hepafcic7 and HIF-1 $\beta$-deficient mutant cell line hepa1C4 were used to analyze the role of HIF-1 a. on radiosensitivity. These cells were exposed for 6 h to desferrioxamine (DFX) before radiation. HIF-1$\alpha$. expression was examined by Western blot. Apoptosis was assessed by DNA fragmentation, propidium iodide staining, and apoptotic cell death detection ELISA kit. Radiation sensitivity was determined using MTT assay. The radiobioiogical parameters, surviving fractions at 2 Gy and 8 Gy, and mean inactivation dose (MID) from the linear-quadratic model were used to assess radiation sensitivity in the statistical analyses. Results: The expression of HIF-1 $\alpha$. was Increased, whereas apoptosis was decreased, by radiation In the presence of DFX In hepal cl c7, but not In hepal C4. The radlosensitivity of hepal C4 cells was not significantly affected by DFX treatment. The radiosensitivlty of hepal cl c7 cells was significantly decreased in the presence of DFX Conclusion: The expression of HIF-1 w by hypoxia-mimic agent DFX reduced apoptosls and radiosensitlvity in mouse hepatoma cell line hepafclc7. These results suggested that HIF-1 u could be Induced by irradiation in hypoxic ceils of tumor masses, and that this mlght Increase radioresistance in hypoxic cells.

Chemopreventive Potential of Lonicerae flos Aqua-Acupuncture Solution (금은화 약침액의 암예방 효과)

  • Kim, Joong-Wan;Choi, Hey-Kyung;Shon, Yun-Hee;Lim, Jong-Kook;Lee, Hang-Woo;Nam, Kyung-Soo
    • Korean Journal of Pharmacognosy
    • /
    • v.30 no.3
    • /
    • pp.261-268
    • /
    • 1999
  • Lonicerae flos aqua-acupuncture solution (LFAS) and Lonicerae flos water-extracted solution (LFWS) were prepared and tested for chemopreventive potentials. Three biomarkers [quinone reductase (QR), ornithine decarboxylase (ODC), glutathione(GSH)] were used to test chemopreventive potential of LFAS. LFAS was potent inducer of QR activity in Hepa1c1c7 murine hepatoma cells, whereas LFWS is less potent. LFAS and LFWS were also induced QR activities in cultured human hepatoma Hep3B cells. The effect of LFAS and LFWS were tested on the growth of Acanthamoeba castellanii. Proliferation of Acanthamoeba castellanii was inhibited by LFAS and LFWS at concentrations of $0.1{\times},\;0.5{\times}\;1{\times},\;and\;3{\times}.$ In addition, GSH levels were increased about 2-fold with LFAS and 1.5-fold with LFWS in cultured murine hepa1c1c7 cells. LFAS and LFWS were also shown to increase GSH levels in human Hep3B cells. These results suggest that LFAS has chemopreventive potential by inducing QR activity, inhibition of ODC activity and increasing GSH levels.

  • PDF

Pretreatment of Low-Dose and Super-Low-Dose LPS on the Production of In Vitro LPS-Induced Inflammatory Mediators

  • Chae, Byeong Suk
    • Toxicological Research
    • /
    • v.34 no.1
    • /
    • pp.65-73
    • /
    • 2018
  • Pretreatment of low-dose lipopolysaccharide (LPS) induces a hyporesponsive state to subsequent secondary challenge with high-dose LPS in innate immune cells, whereas super-low-dose LPS results in augmented expression of pro-inflammatory cytokines. However, little is known about the difference between super-low-dose and low-dose LPS pretreatments on immune cell-mediated inflammatory and hepatic acute-phase responses to secondary LPS. In the present study, RAW 264.7 cells, EL4 cells, and Hepa-1c1c7 cells were pretreated with super-low-dose LPS (SL-LPS: 50 pg/mL) or low-dose LPS (L-LPS: 50 ng/mL) in fresh complete medium once a day for 2~3 days and then cultured in fresh complete medium for 24 hr or 48 hr in the presence or absence of LPS ($1{\sim}10{\mu}g/mL$) or concanavalin A (Con A). SL-LPS pretreatment strongly enhanced the LPS-induced production of tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-6, TNF-${\alpha}$/IL-10, prostaglandin E2 ($PGE_2$), and nitric oxide (NO) by RAW 264.7 cells compared to the control, whereas L-LPS increased IL-6 and NO production only. SL-LPS strongly augmented the Con A-induced ratios of interferon (IFN)-${\gamma}$/IL-10 in EL4 cells but decreased the LPS-induced ratios of IFN-${\gamma}$/IL-10 compared to the control, while L-LPS decreased the Con A- and LPS-induced ratios of IFN-${\gamma}$/IL-10. SL-LPS enhanced the LPS-induced production of IL-6 by Hepa1c1c-7 cells compared to the control, while L-LPS increased IL-6 but decreased IL-$1{\beta}$ and C reactive protein (CRP) levels. SL-LPS pretreatment strongly enhanced the LPS-induced production of TNF-${\alpha}$, IL-6, IL-10, $PGE_2$, and NO in RAW 264.7 cells, and the IL-6, IL-$1{\beta}$, and CRP levels in Hepa1c1c-7 cells, as well as the ratios of IFN-${\gamma}$/IL-10 in LPS- and Con A-stimulated EL4 cells compared to L-LPS. These findings suggest that pre-conditioning of SL-LPS may contribute to the mortality to secondary infection in sepsis rather than pre-conditioning of L-LPS.