DOI QR코드

DOI QR Code

Pretreatment of Low-Dose and Super-Low-Dose LPS on the Production of In Vitro LPS-Induced Inflammatory Mediators

  • Received : 2017.10.31
  • Accepted : 2017.12.20
  • Published : 2018.01.15

Abstract

Pretreatment of low-dose lipopolysaccharide (LPS) induces a hyporesponsive state to subsequent secondary challenge with high-dose LPS in innate immune cells, whereas super-low-dose LPS results in augmented expression of pro-inflammatory cytokines. However, little is known about the difference between super-low-dose and low-dose LPS pretreatments on immune cell-mediated inflammatory and hepatic acute-phase responses to secondary LPS. In the present study, RAW 264.7 cells, EL4 cells, and Hepa-1c1c7 cells were pretreated with super-low-dose LPS (SL-LPS: 50 pg/mL) or low-dose LPS (L-LPS: 50 ng/mL) in fresh complete medium once a day for 2~3 days and then cultured in fresh complete medium for 24 hr or 48 hr in the presence or absence of LPS ($1{\sim}10{\mu}g/mL$) or concanavalin A (Con A). SL-LPS pretreatment strongly enhanced the LPS-induced production of tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-6, TNF-${\alpha}$/IL-10, prostaglandin E2 ($PGE_2$), and nitric oxide (NO) by RAW 264.7 cells compared to the control, whereas L-LPS increased IL-6 and NO production only. SL-LPS strongly augmented the Con A-induced ratios of interferon (IFN)-${\gamma}$/IL-10 in EL4 cells but decreased the LPS-induced ratios of IFN-${\gamma}$/IL-10 compared to the control, while L-LPS decreased the Con A- and LPS-induced ratios of IFN-${\gamma}$/IL-10. SL-LPS enhanced the LPS-induced production of IL-6 by Hepa1c1c-7 cells compared to the control, while L-LPS increased IL-6 but decreased IL-$1{\beta}$ and C reactive protein (CRP) levels. SL-LPS pretreatment strongly enhanced the LPS-induced production of TNF-${\alpha}$, IL-6, IL-10, $PGE_2$, and NO in RAW 264.7 cells, and the IL-6, IL-$1{\beta}$, and CRP levels in Hepa1c1c-7 cells, as well as the ratios of IFN-${\gamma}$/IL-10 in LPS- and Con A-stimulated EL4 cells compared to L-LPS. These findings suggest that pre-conditioning of SL-LPS may contribute to the mortality to secondary infection in sepsis rather than pre-conditioning of L-LPS.

Keywords

References

  1. Alexander, C. and Rietschel, E.T. (2001) Bacterial lipopolysaccharides and innate immunity. J. Endotoxin Res., 7, 167-202.
  2. Patel, P.N., Shah, R.Y., Ferguson, J.F. and Reilly, M.P. (2015) Human experimental endotoxemia in modeling the pathophysiology, genomics, and therapeutics of innate immunity in complex cardiometabolic diseases. Arterioscler. Thromb. Vasc. Biol., 35, 525-534.
  3. Offenbacher, S. and Salvi, G.E. (1999) Induction of prostaglandin release from macrophages by bacterial endotoxin. Clin. Infect. Dis., 28, 505-513. https://doi.org/10.1086/515177
  4. Kawai, T. and Akira, S. (2007) Signaling to NF-kappaB by Toll-like receptors. Trends Mol. Med., 13, 460-469. https://doi.org/10.1016/j.molmed.2007.09.002
  5. Biswas, S.K. and Lopez-Collazo, E. (2009) Endotoxin tolerance: new mechanisms, molecules and clinical significance. Trends Immunol., 30, 475-487. https://doi.org/10.1016/j.it.2009.07.009
  6. Cheng, S.C., Scicluna, B.P., Arts, R.J., Gresnigt, M.S., Lachmandas, E., Giamarellos-Bourboulis, E.J., Kox, M., Manjeri, G.R., Wagenaars, J.A., Cremer, O.L., Leentjens, J., van der Meer, A.J., van de Veerdonk, F.L., Bonten, M.J., Schultz, M.J., Willems, P.H., Pickkers, P., Joosten, L.A., van der Poll, T. and Netea, M.G. (2016) Broad defects in the energy metabolism of leukocytes underlie immunoparalysis in sepsis. Nat. Immunol., 17, 406-413. https://doi.org/10.1038/ni.3398
  7. Deng, H., Maitra, U., Morris, M. and Li, L. (2013) Molecular mechanism responsible for the priming of macrophage activation. J. Biol. Chem., 288, 3897-3906.
  8. Chen, K., Geng, S., Yuan, R., Diao, N., Upchurch, Z. and Li, L. (2015) Super-low dose endotoxin pre-conditioning exacerbates sepsis mortality. EBioMedicine, 2, 324-333.
  9. Morris, M. and Li, L. (2012) Molecular mechanisms and pathological consequences of endotoxin tolerance and priming. Arch. Immunol. Ther. Exp. (Warsz), 60, 13-18. https://doi.org/10.1007/s00005-011-0155-9
  10. Maitra, U., Gan, L., Chang, S. and Li, L. (2011) Low-dose endotoxin induces inflammation by selectively removing nuclear receptors and activating CCAAT/enhancer-binding protein $\delta$. J. Immunol., 186, 4467-4473. https://doi.org/10.4049/jimmunol.1003300
  11. Romagnani, S. (2000) T-cell subsets (Th1 versus Th2). Ann. Allergy Asthma Immunol., 85, 9-18. https://doi.org/10.1016/S1081-1206(10)62426-X
  12. Balkhy, H.H. and Heinzel, F.P. (1999) Endotoxin fails to induce IFN-gamma in endotoxin-tolerant mice: deficiencies in both IL-12 heterodimer production and IL-12 responsiveness. J. Immunol., 162, 3633-3638.
  13. Heinzel, F.P. (1990) The role of IFN-gamma in the pathology of experimental endotoxemia. J. Immunol., 145, 2920-2924.
  14. Kox, W.J., Volk, T., Kox, S.N. and Volk, H.D. (2000) Immunomodulatory therapies in sepsis. Intensive Care Med., 26, S124-S128.
  15. Boutagy, N.E., McMillan, R.P., Frisard, M.I. and Hulver, M.W. (2016) Metabolic endotoxemia with obesity: is it real and is it relevant? Biochimie, 124, 11-20. https://doi.org/10.1016/j.biochi.2015.06.020
  16. Hietbrink, F., Besselink, M.G., Renooij, W., de Smet, M.B., Draisma, A., van der Hoeven, H. and Pickkers, P. (2009) Systemic inflammation increases intestinal permeability during experimental human endotoxemia. Shock, 32, 374-378.
  17. Cani, P.D., Amar, J., Iglesias, M.A., Poggi, M., Knauf, C., Bastelica, D., Neyrinck, A.M., Fava, F., Tuohy, K.M. and Chabo, C. (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 56, 1761-1772. https://doi.org/10.2337/db06-1491
  18. Tarasenko, T.N. and McGuire, P.J. (2017) The liver is a metabolic and immunologic organ: a reconsideration of metabolic decompensation due to infection in inborn errors of metabolism (IEM). Mol. Genet. Metab., 121, 283-288.
  19. Dhainaut, J.F., Marin, N., Mignon, A. and Vinsonneau, C. (2001) Hepatic response to sepsis: interaction between coagulation and inflammatory processes. Crit. Care Med., 29, S42-S47. https://doi.org/10.1097/00003246-200107001-00016
  20. Maitra, U., Gan, L., Chang, S. and Li, L. (2011) Low-dose endotoxin induces inflammation by selectively removing nuclear receptors and activating CCAAT/enhancer-binding protein $\delta$. J. Immunol., 186, 4467-4473. https://doi.org/10.4049/jimmunol.1003300
  21. Aggarwal, N.R., Tsushima, K., Eto, Y., Tripathi, A., Mandke, P., Mock, J.R., Garibaldi, B.T., Singer, B.D., Sidhaye, V.K., Horton, M.R., King, L.S. and D'Alessio, F.R. (2014) Immunological priming requires regulatory T cells and IL-10-producing macrophages to accelerate resolution from severe lung inflammation. J. Immunol., 192, 4453-4464. https://doi.org/10.4049/jimmunol.1400146
  22. Zhou, F., Ciric, B., Li, H., Yan, Y., Li, K., Cullimore, M., Lauretti, E., Gonnella, P., Zhang, G.X. and Rostami, A. (2012) IL-10 deficiency blocks the ability of LPS to regulate expression of tolerance-related molecules on dendritic cells. Eur. J. Immunol., 42, 1449-1458. https://doi.org/10.1002/eji.201141733
  23. Kalinski, P. (2012) Regulation of immune responses by prostaglandin E2. J. Immunol., 188, 21-28. https://doi.org/10.4049/jimmunol.1101029
  24. Fernando, L.P., Fernando, A.N., Ferlito, M., Halushka, P.V. and Cook, J.A. (2000) Suppression of Cox-2 and TNF-alpha mRNA in endotoxin tolerance: effect of cycloheximide, antinomycin D, and okadaic acid. Shock, 14, 128-133. https://doi.org/10.1097/00024382-200014020-00009
  25. Ando, K. and Fujita, T. (2009) Metabolic syndrome and oxidative stress. Free Radic. Biol. Med., 47, 213-218. https://doi.org/10.1016/j.freeradbiomed.2009.04.030
  26. Hotamisligil, G.S. (2006) Inflammation and metabolic disorders. Nature, 444, 860-867. https://doi.org/10.1038/nature05485
  27. Kumar, S. and Adhikari, A. (2017) Dose-dependent immunomodulating effects of endotoxin in allergic airway inflammation. Innate Immun., 23, 249-257. https://doi.org/10.1177/1753425917690443
  28. Matsushita, H., Ohta, S., Shiraishi, H., Suzuki, S., Arima, K., Toda, S., Tanaka, H., Nagai, H., Kimoto, M., Inokuchi, A. and Izuhara, K. (2010) Endotoxin tolerance attenuates airway allergic inflammation in model mice by suppression of the T-cell stimulatory effect of dendritic cells. Int. Immunol., 22, 739-747.
  29. Chae, B.S. (2002) Comparative study of the endotoxemia and endotoxin tolerance on the production of Th cytokines and macrophage interleukin-6: differential regulation of indomethacin. Arch. Pharm. Res., 25, 910-916. https://doi.org/10.1007/BF02977013
  30. Poujol, F., Monneret, G., Gallet-Gorius, E., Pachot, A., Textoris, J. and Venet, F. (2017) Ex vivo Stimulation of Lymphocytes with IL-10 mimics sepsis-induced intrinsic T-cell alterations. Immunol. Invest., 28, 1-15.
  31. Heymann, F. and Tacke, F. (2016) Immunology in the liver--from homeostasis to disease. Nat. Rev. Gastroenterol. Hepatol., 13, 88-110.
  32. Bauer, M., Press, A.T. and Trauner, M. (2013) The liver in sepsis: patterns of response and injury. Curr. Opin. Crit. Care., 19, 123-127.
  33. Saad, B., Frei, K., Scholl, F.A., Fontana, A. and Maier, P. (1995) Hepatocyte-derived interleukin-6 and tumor-necrosis factor alpha mediate the lipopolysaccharide-induced acutephase response and nitric oxide release by cultured rat hepatocytes. Eur. J. Biochem., 229, 349-355. https://doi.org/10.1111/j.1432-1033.1995.0349k.x
  34. Panesar, N., Tolman, K. and Mazuski, J. E. (1999) Endotoxin stimulates hepatocyte interleukin-6 production. J. Surg. Res., 85, 251-258. https://doi.org/10.1006/jsre.1999.5648
  35. Mohamed, J., Nazratun Nafizah, A.H., Zariyantey, A.H. and Budin, S.B. (2016) Mechanisms of diabetes-induced liver damage: the role of oxidative stress and inflammation. J. Sultan Qaboos Univ. Med., 16, e132-e141. https://doi.org/10.18295/squmj.2016.16.02.002
  36. Nakasone, M., Nakaso, K., Horikoshi, Y., Hanaki, T., Kitagawa, Y., Takahashi, T., Inagaki, Y. and Matsura, T. (2016) Preconditioning by low dose LPS prevents subsequent LPS-induced severe liver injury via Nrf2 activation in mice. Yonago Acta Med., 59, 223-231.
  37. Dupuy, A.M., Terrier, N., Senecal, L., Morena, M., Leray, H., Canaud, B. and Cristol, J.P. (2003) Is C-reactive protein a marker of inflammation? Nephrologie, 24, 337-341.
  38. Ridker, P.M. and Morrow, D.A. (2003) C-reactive protein, inflammation, and coronary risk. Cardiol. Clin., 21, 315-325. https://doi.org/10.1016/S0733-8651(03)00079-1
  39. Kramer, F., Torzewski, J., Kamenz, J., Veit, K., Hombach, V., Dedio, J. and Ivashchenko, Y. (2008) Interleukin-1beta stimulates acute phase response and C-reactive protein synthesis by inducing an NFkappaB- and C/EBPbeta-dependent autocrine interleukin-6 loop. Mol. Immunol., 45, 2678-2689. https://doi.org/10.1016/j.molimm.2007.12.017
  40. Pradhan, A.D., Manson, J.E., Rifai, N., Buring, J.E. and Ridker, P.M. (2001) C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA, 286, 327-334.

Cited by

  1. Methyl jasmonate a stress phytohormone attenuates LPS induced in vivo and in vitro arthritis pp.1573-4978, 2018, https://doi.org/10.1007/s11033-018-4520-1
  2. Gamma-irradiation of Streptococcus pneumoniae for the use as an immunogenic whole cell vaccine vol.56, pp.8, 2018, https://doi.org/10.1007/s12275-018-8347-1