• Title/Summary/Keyword: helical gear

Search Result 149, Processing Time 0.026 seconds

A Study on Optimization of Tooth Micro-geometry for a Helical Gear Pair (헬리컬 기어의 치형최적화에 관한 연구)

  • Zhang, Qi;Kang, Jae-Hwa;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.4
    • /
    • pp.70-75
    • /
    • 2011
  • Nowadays, modern gearboxes are characterized by high torque load demands, low running noise and compact design. Also durability of gearbox is specially a major issue for the industry. For the gearbox which used in wind turbine, gear transmission error(T.E.) is the excitation that leads the tonal noise known as gear whine, and radiated gear whine is also the dominant source of noise in the whole gearbox. In this paper, tooth modification for the high speed stage is used to compensate for the deformation of the teeth due to load and to ensure a proper meshing to achieve an optimized tooth contact pattern. The gearbox is firstly modeled in Romax software, and then the various combination analysis of the tooth modification is presented by using Windows LDP software, and the prediction of transmission error under the loaded torque for the helical gear pair is investigated, the transmission error, contact stress, root stress and load distribution are also calculated and compared before and after tooth modification under one torque condition. The simulation result shows that the transmission error and stress under the loads can be minimized by the appropriate tooth modification.

A Study on the Relation Between Backlash and Tooth Contact for Optimization of the Conical Gear Marine Gearbox (선박용 코니칼 기어 감속기의 최적화를 위한 백래쉬와 물림에 관한 연구)

  • Kang, Jai-Hwa;Zhang, Qi;Ahn, In-Hyo;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.2
    • /
    • pp.52-60
    • /
    • 2011
  • Korea is the best country for ship-building. But nowadays, the speedboat and yacht are not mostly developed yet. For the sleek lines of ship, more innovative transmission system should be obtained in the ship industry. In general, marine transmissions often use the straight shafts and the helical gears. So it makes problem that engine-room requires large space. In this case, conical gear is the best solution for this. Until now, technology of conical gear is not generalized, but it will be increased more through many applications. So, in order to get conical gear design technology by ourselves, this thesis is conducted. This paper was written to gain useful information of marine gearbox design applied conical gear through the measurement of backlash, computer analysis and tooth contact test of helical conical involute gear pairs.

A Study on the Helical Gear Forming by Cold Extrusion (냉간 압출에 의한 헬리컬 기어의 제조에 관한 연구)

  • 최재찬;조해용;권혁홍;한진철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.127-138
    • /
    • 1991
  • A gear forming method by cold extrusion and an analytical method with its numerical solution program based on the upper bound method were developed. In the analysis the involute curve was as a shape of die and the upper bound method was used to calculate energy dissipation rate. By this method the power requirement and optimum conditions necessary for extruding helical(spur) gear were successfully calculated. These numerical solutions are in good agreement with experimental data. In the experiment, 4-6 class helical gear of KS standard for automobile transmission was successfully manufactured.

Study on the Total Design of a Conical Involute Gear (코니칼 인볼류트 기어의 Total 설계에 관한 연구)

  • Kim, Jun-Seong;Lee, Do-Young;Kang, Jai-Hwa;Xu, Zhe-Zhu;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.2
    • /
    • pp.100-107
    • /
    • 2014
  • Currently, there are many power transmission devices, including gears, friction wheels, chains, and belts. Because the power transmission of gears is most certainin these devices, gears are widely used in different power transmission fields and environments. In accordance with the gear shape, gears can be classified as cylindrical gears and conical gears. A cylindrical gear, which provides a means of power transmission under parallel axis and skewed axis conditions, contains a spur gear, a helical gear and a worm gear. A conical gear, which can be used on a skewed axis as well as parallel and crossed axes, includes a bevel gear(e.g., straight bevel, spiral bevel, hypoid gear) and a conical involute gear(or a bevel oid gear). In this paper, a conical involute gear which utilizes the fabrication method of other involute gears such as spur and helical gears using a CNC hobbing machine is discussed.

A Study of Effects of the Helical Angle Directions of Planetary Gear Sets on the Axial Forces on Thrust Bearings in an Automatic Transmission (자동변속기 적용 유성기어의 헬릭스 각 방향에 의한 쓰러스트 베어링 작용 축 하중 연구)

  • Kwon, Hyun Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.3
    • /
    • pp.92-99
    • /
    • 2021
  • An automatic transmission, which consists of several decks of planetary gear sets, provides multiple speed and torque ratios by actuating brakes and clutches (mechanical friction components) for connecting central members of the planetary gear sets. The gear set consists of the sun gear, the ring gear, and the carrier supporting multiple planet gears with pin shafts. In designing a new automatic transmission, there are many steps to design and analyze: gears, brakes and clutches, shafts, and other mechanical components. Among them, selecting thrust bearings that not only allow the relative rotation of the central members and other mechanical components but also support axial forces coming from them is important; doing so yields superior driving performance and better fuel efficiency. In selecting thrust bearings, the magnitude of axial forces on them is a critical factor that affects their bearing size and performance; its results are systematically related to the direction of the helical angle of each planetary gear set (a geometric design profile). This research presents the effects of the helical angle direction on the axial forces acting on thrust bearings in an automatic transmission consisting of planetary gear sets. A model transmission was built by analyzing kinematics and power flows and by designing planetary gear sets. The results of the axial forces on thrust bearings were analyzed for all combinations of helix angle directions of the planetary gear sets.

Study on Empirical Gear Profile Micro-modifications for Gear Transmission (기어미션용 실증적 기어치형수정에 관한 연구)

  • Zhang, Qi;Wang, Jiu-Gen;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.3
    • /
    • pp.54-62
    • /
    • 2017
  • When gears mesh, shock and noise are produced as results of tooth error and tooth deformation under load. Transmission error (TE) is the most important cause of gear noise and vibration because TEs affect the changes of the force and the speed of gears. Gear tooth modification research plays a positive role in reducing TE and improving the design level and transmission performance of transmission systems. In high-precision manufacturing gear, gear tooth modification is also commonly used to reduce noise in practical applications. In order to study the accuracy of gear transmission, some empirical gear profile micro-modifications are introduced, and a helical gear pair is modeled and analyzed in RomaxDesigner software to investigate the utility of these modification methods. Some of these will be selected as experimental proposals for gear pairs, and these manufactured gears will be tested and compared in a semi-anechoic room later. The final purpose of this study is to find reasonable and convenient empirical formulae to facilitate improved gear production.

Design of Worm Gear for CVVL Paired with ZK Worm and Involute Helical Gear (ZK 웜과 인볼류트 헬리컬기어로 결합된 CVVL용 웜기어 설계)

  • Sohn, Jonghyeon;Park, Nogill;Oh, Chunghan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.1
    • /
    • pp.77-84
    • /
    • 2014
  • The worm gear is used in the motor drive system of automotive CVVL because of its compactness and self-locking ability. A ZK worm and an involute helical gear can be meshed in order to reduce production cost. However, the gearing is not suitable for the reliability and the NVH problem. To improve the dynamic performances, an optimal design process is considered. The transmission error is calculated theoretically and minimized with the several gear design parameters. An inequality condition such as the teeth interference elimination is added.

A Study on Gear S/W Development Based on AGMA Specifications (AGMA 규격에 의한 기어 해석용 S/W 개발에 관한 연구)

  • Shin J.H.;Kwon S.M.;Hwang J.G.;Kim J.C.;Kim C.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.391-392
    • /
    • 2006
  • Gears are essential and useful elements which power is transmitted from a source to a driven equipment. Therefore, it is very important to design gears correctly. Two important points in the gear design procedures are capacities of the gears's bending strength and pitting resistance. This paper deals with two subjects about spur and helical gears : analyzing for strength and wear capacities, and design of face width. Also, this paper proposes the analytical program which is developed for computer aided design and analysis This program is based on the American Gear Manufactures Association(AGMA) Standards.

  • PDF

A Study on Extrusion of Helical Gears by a Two-step Process (2단계공정을 이용한 헬리컬기어 압출에 관한 연구)

  • Jung S. Y.;Park J. H.;Kim C.;Kim C. H.;Choi J. C.;Choi S. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.04a
    • /
    • pp.85-91
    • /
    • 2002
  • Of all the many types of machine elements which exist today, gears are among the most commonly used. Many researches have been done to manufacture helical gears by cold forging and extrusion. Although cold forging and extrusion were applied to some bevel, spur, and helical gears, problems in connection with reducing forming load and tool life still make it difficult for the related methods to be commercialized. In this study, focusing on reducing load in forming helical gears, extrusion of helical gears by a two-step process is proposed. The process is composed of an extrusion step of spur gears used as preform and a torsion step of the preform to make helical gears. Upper-bound analysis for the two-step process is performed and compared with results of experiments. The newly proposed method can be used as an advanced forming technique to remarkably reduce the forming load and replace the conventional forming process of helical gears.

  • PDF