• Title/Summary/Keyword: harmonic numbers

Search Result 62, Processing Time 0.024 seconds

EXPLICIT EVALUATION OF HARMONIC SUMS

  • Xu, Ce
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.13-36
    • /
    • 2018
  • In this paper, we obtain some formulae for harmonic sums, alternating harmonic sums and Stirling number sums by using the method of integral representations of series. As applications of these formulae, we give explicit formula of several quadratic and cubic Euler sums through zeta values and linear sums. Furthermore, some relationships between harmonic numbers and Stirling numbers of the first kind are established.

FURTHER LOG-SINE AND LOG-COSINE INTEGRALS

  • Choi, Junesang
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.4
    • /
    • pp.769-780
    • /
    • 2013
  • Motivated essentially by their potential for applications in a wide range of mathematical and physical problems, the log-sine and log-cosine integrals have been evaluated, in the existing literature on the subject, in many different ways. Very recently, Choi [6] presented explicit evaluations of some families of log-sine and log-cosine integrals by making use of the familiar Beta function. In the present sequel to the investigation [6], we evaluate the log-sine and log-cosine integrals involved in more complicated integrands than those in [6], by also using the Beta function.

NEW CONGRUENCES WITH THE GENERALIZED CATALAN NUMBERS AND HARMONIC NUMBERS

  • Elkhiri, Laid;Koparal, Sibel;Omur, Nese
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.5
    • /
    • pp.1079-1095
    • /
    • 2021
  • In this paper, we give new congruences with the generalized Catalan numbers and harmonic numbers modulo p2. One of our results is as follows: for prime number p > 3, $${\sum\limits_{k=(p+1)/2}^{p-1}}\;k^2B_{p,k}B_{p,k-(p-1)/2}H_k{\equiv}(-1)^{(p-1)/2}\(-{\frac{521}{36}}p-{\frac{1}{p}}-{\frac{41}{12}}+pH^2_{3(p-1)/2}-10pq^2_p(2)+4\({\frac{10}{3}}p+1\)q_p(2)\)\;(mod\;p^2),$$ where qp(2) is Fermat quotient.

SOME RESULTS ON PARAMETRIC EULER SUMS

  • Xu, Ce
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1255-1280
    • /
    • 2017
  • In this paper we present a new family of identities for parametric Euler sums which generalize a result of David Borwein et al. [2]. We then apply it to obtain a family of identities relating quadratic and cubic sums to linear sums and zeta values. Furthermore, we also evaluate several other series involving harmonic numbers and alternating harmonic numbers, and give explicit formulas.

SOME EVALUATIONS OF INFINITE SERIES INVOLVING DIRICHLET TYPE PARAMETRIC HARMONIC NUMBERS

  • Hongyuan Rui;Ce Xu;Xiaobin Yin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.3
    • /
    • pp.671-697
    • /
    • 2024
  • In this paper, we formally introduce the notion of a general parametric digamma function Ψ(−s; A, a) and we find the Laurent expansion of Ψ(−s; A, a) at the integers and poles. Considering the contour integrations involving Ψ(−s; A, a), we present some new identities for infinite series involving Dirichlet type parametric harmonic numbers by using the method of residue computation. Then applying these formulas obtained, we establish some explicit relations of parametric linear Euler sums and some special functions (e.g. trigonometric functions, digamma functions, Hurwitz zeta functions etc.). Moreover, some illustrative special cases as well as immediate consequences of the main results are also considered.

EVALUATIONS OF SOME QUADRATIC EULER SUMS

  • Si, Xin;Xu, Ce
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.2
    • /
    • pp.489-508
    • /
    • 2020
  • This paper develops an approach to the evaluation of quadratic Euler sums that involve harmonic numbers. The approach is based on simple integral computations of polylogarithms. By using the approach, we establish some relations between quadratic Euler sums and linear sums. Furthermore, we obtain some closed form representations of quadratic sums in terms of zeta values and linear sums. The given representations are new.

NOTES ON FORMAL MANIPULATIONS OF DOUBLE SERIES

  • Choi, June-Sang
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.4
    • /
    • pp.781-789
    • /
    • 2003
  • Formal manipulations of double series are useful in getting some other identities from given ones and evaluating certain summations, involving double series. The main object of this note is to summarize rather useful double series manipulations scattered in the literature and give their generalized formulas, for convenience and easier reference in their future use. An application of such manipulations to an evaluation for Euler sums (in itself, interesting), among other things, will also be presented to show usefulness of such manipulative techniques.

Some Theoretical Considerations in Body Tide Calculation (고체지구조석계산에 있어 몇 가지 이론적 고찰)

  • Na, Sung-Ho;Shin, Young-Hong;Baek, Jeong-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.2
    • /
    • pp.133-139
    • /
    • 2011
  • The largest terms in the solid Earth body tide calculation are second degree spherical harmonic components due to the moon or the sun, and they compose about 98 percent of total contribution. Each degree harmonics of the tidal perturbation should be evaluated through multiplication with distinct Love numbers or their combinations. Correct evaluation of these terms in gravity tide is considered with re-calculated Love numbers. Frequency dependence of Love numbers for spherical harmonic tide upon the order number is discussed. Tidal displacement and tidally induced deviation of the vertical are also evaluated. Essential concepts underlying the body tide calculation are briefly summarized.