• Title/Summary/Keyword: half-power method

Search Result 356, Processing Time 0.026 seconds

Root Cause and Countermeasure on the Spike Vibration of a 550MW Class USC(Ultra Super Critical) Steam Turbine (550MW급 초초임계압(USC, Ultra Super Critical) 증기터빈의 Spike Vibration 에 관한 원인 규명 및 대책)

  • Yang, Seong-Heon;Kim, Yong-Seok;Nah, Un-Hak
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.442-447
    • /
    • 2007
  • A very abnormal vibration was occurred at the LP(low pressure) turbine continuously during the pre-operation for a 550MW class USC(ultra super critical) steam turbine. This vibration was initiated at the rotating speed of about 3,450rpm and then the vibration amplitude was highly increased the number by $2{\sim}3$ times with the increase of the rotating speed to the rated speed(3,600rpm). In this paper, this abnormal vibration named spike vibration. This spike vibration was caused by the rubbing between the rotating bucket tip seal and the Lower Half of spill strip. Also, this paper presents the mechanism of the spike vibration and the proper method to eliminate this abnormal vibration problem. This result would be good practice to find the solution of similar high vibration in the USC steam turbines for power plant as well as industrial rotating machineries.

  • PDF

Influence of ground motion spatial variations and local soil conditions on the seismic responses of buried segmented pipelines

  • Bi, Kaiming;Hao, Hong
    • Structural Engineering and Mechanics
    • /
    • v.44 no.5
    • /
    • pp.663-680
    • /
    • 2012
  • Previous major earthquakes revealed that most damage of the buried segmented pipelines occurs at the joints of the pipelines. It has been proven that the differential motions between the pipe segments are one of the primary reasons that results in the damage (Zerva et al. 1986, O'Roueke and Liu 1999). This paper studies the combined influences of ground motion spatial variations and local soil conditions on the seismic responses of buried segmented pipelines. The heterogeneous soil deposits surrounding the pipelines are assumed resting on an elastic half-space (base rock). The spatially varying base rock motions are modelled by the filtered Tajimi-Kanai power spectral density function and an empirical coherency loss function. Local site amplification effect is derived based on the one-dimensional wave propagation theory by assuming the base rock motions consist of out-of-plane SH wave or combined in-plane P and SV waves propagating into the site with an assumed incident angle. The differential axial and lateral displacements between the pipeline segments are stochastically formulated in the frequency domain. The influences of ground motion spatial variations, local soil conditions, wave incident angle and stiffness of the joint are investigated in detail. Numerical results show that ground motion spatial variations and local soil conditions can significantly influence the differential displacements between the pipeline segments.

Study of High Efficiency LLC Resonant Converter for a Battery Charger of Emergency Electric Power Generator Control System (비상용 발전기 제어시스템의 배터리 충전기를 위한 고효율 LLC 공진형 컨버터의 연구)

  • Lee, Joonmin;Park, Min-Gi;Lee, Young Keun;La, Jae-Du
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.10
    • /
    • pp.93-100
    • /
    • 2013
  • Generally, the conventional battery charging system using an analog method has the large, heavy hardware and low efficiency. Also, it has the disadvantage that it is necessary to replace the control circuit on the basis of the characteristic curve of the specific battery cell. The proposed programmable digital LLC resonant charging system use high efficiency control system(CC-CV), and has characteristic a small hardware and advantage that a digital programming of the voltage, current, and battery capacity characteristics can be flexible. The system proposed the use of Half-bridge LLC resonant converter is possible to improve efficiency and reduce switching losses by using ZVS topology. Further, a constant voltage - constant current(CC-CV) control algorithm apply to the charger which using a buck converter. The performance of the proposed system is demonstrated through experiments.

Development of Boost Type Bidirectional ZCS DC/DC Converter For EV of Transformer Series Construction (변압기 직렬구조의 EV용 승압형 양방향 ZCS DC/DC 컨버터 개발)

  • Choi, Jung-Sik;Park, Byung-Chul;Chung, Dong-Hwa;Song, Sung-Gun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.11
    • /
    • pp.37-46
    • /
    • 2013
  • This paper proposes the boost type bidirectional zero current switching(ZCS) DC/DC converter of transformer series construction for electric vehicle operation using low voltage battery. This converter can high boost through the double voltage circuit and series construction of output part using two converters. This converter system has the advantages that bidirectional power transfer is excellent, size and making of transformer because of this converter keeps the transformation ratio to 1:1. Proposed DC/DC converter uses the ZCS method to decrease the switching loss. By replacing reactance ingredients of L-C resonance circuit for ZCS with leakage inductance ingredients of high frequency transformer and half-bridge capacitor it reduces system size and expense because of not add special reactor. It can confirm to output of high voltage to operate the electric vehicle with low voltage of input and operation of ZCS in all load region through the result of PSIM simulation and experiment.

Half mJ Supercontinuum Generation in a Telecommunication Multimode Fiber by a Q-switched Tm, Ho:YVO4 Laser

  • Zhou, Renlai;Ren, Jiancun;Lou, Shuli;Ju, Youlun;Wang, Yuezhu
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.7-12
    • /
    • 2015
  • Up to ${\sim}520{\mu}J$ broadband mid-infrared (IR) supercontinuum (SC) generation in telecommunication multimode fiber (MMF) directly pumped by a $2.054{\mu}m$ nanosecond Q-switched Tm, $Ho:YVO_4$ laser is demonstrated. An average output power of 3.64 W is obtained in the band of ~1900 to ~2600 nm, and the corresponding optic-to-optic conversion efficiency is 67% by considering the coupling efficiency. The spectrum has extremely high flatness with negligible intensity variation (<2%) in the wavelength interval of ~2070 to ~2475 nm. The SC long-wavelength edge is limited by the silicon glass material loss, and by optimizing the MMF length, the SC spectrum could extend out to ${\sim}2.6{\mu}m$. The output SC pulse shapes are measured at different output powers, and no splits are found. The SC laser beam is nearly diffraction limited with an $M^2=1.15$ in $2.1{\mu}m$ measured by the traveling knife-edge method, and the laser beam spot is monitored by an infrared vidicon camera.

Development of a Test Apparatus for Control Element Drive Mechanism of Standard Reactor (표준형 원자로 제어봉 구동장치 시험기기 개발)

  • Kim, C.K.;Cheon, J.M.;Lee, J.M.;Kweon, S.M.
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2374-2376
    • /
    • 2004
  • In this paper, we describe a DSP-based test apparatus for Control Element Drive Mechanism (CEDM). Using this apparatus, we can catch the mechanical and electrical characteristics of CEDM and obtain the information about the improvement of CEDM and the design of CEDM power controller. The test apparatus for CEDM introduced in this paper can input firing angles directly into gate drive circuits of thyristors so that this method can be used to derive the maximum and minimum values of firing angles within available limits for a 3-phase half-wave rectifier. Angle inputs help us understand each coil's response characteristics. Since this apparatus generates a serial sequence for CEDM insertion and withdrawal operations, we may judge whether CEDM works correctly as expected or not in each phase of a step movement.

  • PDF

Turbulent Flow over Thin Rectangular Riblets

  • El-Samni O. A.;Yoon Hyun Sik;Chun Ho Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.9
    • /
    • pp.1801-1810
    • /
    • 2005
  • The effect of longitudinal thin rectangular riblets aligned with the flow direction on turbulent channel flow has been investigated using direct numerical simulation. The thin riblets have been modeled using the immersed boundary method (IBM) where the velocities at only one set of vertical nodes at the riblets positions are enforced to be zeros. Different spacings, ranging between 11 and 43 wall units, have been simulated aiming at getting the optimum spacing corresponding to the maximum drag reduction while keeping the height/spacing ratio at 0.5. Reynolds number based on the friction velocity ${\mu}_\tau$ and the channel half depth $\delta$ is set to 150. The flow is driven by adjusted pressure gradient so that the mass flow rate is kept constant in all the simulations. This study shows similar trend of the drag ratio to that of the experiments at the different spacings. Also, this research provides an optimum spacing of around 17 wall units leading to maximum drag reduction as experimental data. Explanation of drag increasing/decreasing mechanism is highlighted.

Root Cause and Countermeasure on the Spike Vibration of a 550MW Class USC(ultra super critical) Steam Turbine (550MW급 초초임계압(USC, ultra super critical) 증기터빈의 Spike Vibration에 관한 원인 규명 및 대책)

  • Yang, Seong-Heon;Kim, Yong-Seok;Nah, Un-Hak;Park, Jong-Geun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1238-1245
    • /
    • 2007
  • A very abnormal vibration was occurred at the LP(low pressure) turbine continuously during the pre-operation for a 550MW class USC(ultra super critical) steam turbine. This vibration was initiated at the rotating speed of about 3,450 rpm and then the vibration amplitude was highly increased the number by $2{\sim}3$ times with the increase of the rotating speed to the rated speed (3,600 rpm). In this paper, this abnormal vibration named spike vibration. This spike vibration was caused by the rubbing between the rotating bucket tip seal and the lower half of spill strip. Also, this paper presents the mechanism of the spike vibration and the proper method to eliminate this abnormal vibration problem. This result would be good practice to find the solution of similar high vibration in the USC steam turbines for power plant as well as industrial rotating machineries.

Implementation of sigma-delta A/D converter IP for digital audio

  • Park SangBong;Lee YoungDae
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.199-203
    • /
    • 2004
  • In this paper, we only describe the digital block of two-channel 18-bit analog-to-digital (A/D) converter employing sigma-delta method and xl28 decimation. The device contains two fourth comb filters with 1-bit input from sigma­delta modulator. each followed by a digital half band FIR(Finite Impulse Response) filters. The external analog sigma-delta modulators are sampled at 6.144MHz and the digital words are output at 48kHz. The fourth-order comb filter has designed 3 types of ways for optimal power consumption and signal-to-noise ratio. The following 3 digital filters are designed with 12tap, 22tap and 116tap to meet the specification. These filters eliminate images of the base band audio signal that exist at multiples of the input sample rate. We also designed these filters with 8bit and 16bit filter coefficient to analysis signal-to-noise ratio and hardware complexity. It also included digital output interface block for I2S serial data protocol, test circuit and internal input vector generator. It is fabricated with 0.35um HYNIX standard CMOS cell library with 3.3V supply voltage and the chip size is 2000um by 2000um. The function and the performance have been verified using Verilog XL logic simulator and Matlab tool.

  • PDF

A Low-Error Truncated Booth Multiplier (작은 오차를 갖는 절사형 Booth 승산기)

  • 정해현;박종화;신경욱
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.617-620
    • /
    • 2001
  • This paper describes an efficient error-compensation technique for designing a low-error truncated Booth multiplier that receives two N-bit numbers and produces an N-bit product by eliminating the N least-significant bits. Applying the proposed method, a truncated Booth multiplier for area-efficient and low-power applications has been designed, and its performance (truncation error, area) was analyzed. Since the truncated Booth multiplier omits about half the partial product generators and adders, it has an area reduction by about 35%~40%, compared with non-truncated parallel multipliers. Error analysis shows that the proposed approach reduces the average truncation error by approximately 30%~40%, compared with conventional methods.

  • PDF