• Title/Summary/Keyword: hER

Search Result 334, Processing Time 0.024 seconds

Thermomechanical Effect on the Water Wet Dental Hard Tissue by the Q-switched Er : YAG Laser

  • Y. H. Kwon;Ky0-han Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.2
    • /
    • pp.231-236
    • /
    • 1999
  • Understanding the exgenous water induced thermomechanical effect on the dental hard tissue by the Q-switched Er:YAG laser (1-$mutextrm{s}$-long pulse width) has an important impact on the further understanding of the free-running Er:YAG laser (250-$mutextrm{s}$-long pulse width) ablation on the dental gard tissue because one macroscopic effect in the free-running laser is an accumulation of microscopic effects we investigated in this study. The Q-switched Er:YAG laser with exogenous water on the tooth enhanced ablation rate compared to the case of no water on the tooth. The frequency of exogenous-water jet on the tooth has affected the ablation rate in such a way that as we dispensed water drops less frequently we could get more enhanced ablation rate. The amplitude of the recoil pressure depends on the tooth surface conditions such that as surfaces wet, and as the volume of the exogenous water drop increased, the amplitude of the recoil pressure increased also. From this study we realized that the 1 $mutextrm{s}$ long pulsed induced thermomechanical effect provides us useful information for the understanding of the free-running Er:YAG laser induced ablation with exogenous water.

  • PDF

Identification of an antimicrobial peptide from human methionine sulfoxide reductase B3

  • Kim, Yong-Joon;Kwak, Geun-Hee;Lee, Chu-Hee;Kim, Hwa-Young
    • BMB Reports
    • /
    • v.44 no.10
    • /
    • pp.669-673
    • /
    • 2011
  • Human methionine sulfoxide reductase B3A (hMsrB3A) is an endoplasmic reticulum (ER) reductase that catalyzes the stereospecific reduction of methionine-R-sulfoxide to methionine in proteins. In this work, we identified an antimicrobial peptide from hMsrB3A protein. The N-terminal ER-targeting signal peptide (amino acids 1-31) conferred an antimicrobial effect in Escherichia coli cells. Sequence and structural analyses showed that the overall positively charged ER signal peptide had an Argand Pro-rich region and a potential hydrophobic ${\alpha}$-helical segment that contains 4 cysteine residues. The potential ${\alpha}$-helical region was essential for the antimicrobial activity within E. coli cells. A synthetic peptide, comprised of 2-26 amino acids of the signal peptide, was effective at killing Gram-negative E. coli, Klebsiella pneumoniae, and Salmonella paratyphi, but had no bactericidal activity against Gram-positive Staphylococcus aureus.

Fabrication of $Er^{3+}/Yb_3$ co-doped Soda-lime Glass Thin Films using Radio Frequency Magnetron Sputtering Method and Optical Property Characterization (RF 마그네트론 스퍼터에 의해 제조된 $Er^{3+}/Yb_3$ 도핑된 소다 라임 유리 박막의 제조 및 광학적 특성평가)

  • 임종모;김미옥;이병택;문종하;김진혁
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2002.07a
    • /
    • pp.42-43
    • /
    • 2002
  • 고상 소결법으로 715iO$_2$+11$Na_2$O+10CaO+3Er$_2$O$_3$+5Yb$_2$O$_3$(all wt%) 조성의 스퍼터용 유리 타겟을 제조하여, RF 마그네트론 스퍼터에 의해 희토류 원소가 첨가된 광증폭기용 다성분계 sodium calcium silicate 유리박막을 제조하였다. 최적의 공정조건을 얻기 위해 RF-power, 공정압력, 기판온도를 변화시키면서 박막을 제조하여 RF-power 150W, 공정압력 4mtorr, 기판온도 50$0^{\circ}C$, 타겟-기판 거리 6cm에서 타겟의 손상이 심하지 않으면서, 1.4$mu extrm{m}$/h의 최고 증착율을 가지는 양질의 박막을 제조하였다. (중략)

  • PDF

Hall-effect Properties of Single Crystal Semiconductor p-GaSe Dopes with $Er^{3+}$ (Erbium 도핑된 p-GaSe 단결성의 홀 효과 특성)

  • 이우선;김남오;손경춘
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.1
    • /
    • pp.1-5
    • /
    • 2000
  • Optical and electrical properties of GaSe:Er\ulcorner single crystals grown by the Bridgenman technique have been investigated by using optical absorption and h\Hall-effect measurement system. The Hall coefficients were mea-sured by using a high impedance electrometer in the temperature range from 360K to 150K. The temperature dependence of hole concentration show the characteristic of a partially compensated p-type semiconductor. Carrier density(N\ulcorner) of GaSe doped with Erbium was measured about 3.25$\times$10\ulcorner [cm\ulcorner] at temperature 300K, which was higher than undoped specimen. Photon energy gap (E\ulcorner) of GaSe:Er\ulcorner specimen was measured about 1.79eV.

  • PDF

Corrosion Rate of Buried Pipeline by Alternating Current

  • Song, H.S.;Kim, Y.G.;Lee, S.M.;Kho, Y.T.;Park, Y.S.
    • Corrosion Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • An alternating current (AC) corrosion on buried pipeline has been studied using coupon and ER probe. Coupons and ER probes were applied to the sites from high value of AC voltage to low value based on the survey of AC voltages on buried gas transmission pipeline over the country. Parameters such as AC current density of coupon, AC voltage, cathodic protection potential, soil resistivity and frequency were monitored continually. Corrosion induced by AC was observed even under cathodically protected condition that met cathodic protection criterion (; below -850 mV vs. CSE). Corrosion rate was affected mainly not by AC voltage but by both of frequency and AC current density. An experimental corrosion rate relation could be obtained according to effective AC current density, in which AC corrosion rate increased linearly with effective AC current density, and its slope was 0.619 in coupon method and 0.885 in ER probes.

THERMOLUMINESCENCE DOSIMETRIC PROPERTIES OF Ge- AND Er-DOPED OPTICAL FIBRES AND THEIR APPLICATION IN THE MEASUREMENT OF DEPTH -DOSE IN SOLID WATER PHANTHOM

  • Amin, Y.M.;Abdulla, Y.A.;Khoo, B.H.
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.3
    • /
    • pp.143-147
    • /
    • 2001
  • The dosimetric properties of Ge- and Er-doped optical fibres are studied. The Ge-doped fibre is found to be more sensitive to radiation and there is little fading of TL signal compared with Er-doped fibre. The Ge- and Er-doped fibres showed a linear response over a range of ${\sim}1\;Gy$ to about 120 Gy and ${\sim}1Gy$ to about 250Gy respectively. The Ge-doped fibre is found to be dose-rate independent both for photons and electron beams of energy ranging from 6 to 10 MeV and 6 to 12 MeV respectively. The fibre is energy independent for energy greater than ${\sim}0.1\;MeV$ for photon or 0.1 MeV for electron beam. From the depth-dose measurement, it was found that the position of maximum dose, dmax, increased with increasing energy ranging from ${\sim}2\;cm$ and ${\sim}2.5\;cm$ for 6 MeV and 10 MeV photons respectively. The central axis percentage depth dose at 10 cm depth was found to be in good agreement with the value obtained using ionization chamber.

  • PDF

Exogenous-Water-Induced Thermal and Mechanical Effects on Dental Hard Tissue by the Er:YAG Laser: Free-running Mode (외부의 물과 Er:YAG Laser의 작용에 의한 Dental Hard Tissue에서의 열과 역학적 효과: Free-running 방식)

  • Kwon, Y.H.;Frederickson, C.J.;Motamedi, M.;Rastegar, S.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.380-384
    • /
    • 1997
  • This study was performed to understand the exogenous-water-drop induced thermomechanical effect on the tooth in the free-running Er:YAG laser mode for the proper use of water as a laser energy absorber and coolant in dentistry. The ree-running Er:YAG laser was used in the dental hard tissue ablation study. A Microjet system was employed to dispense precise water drops. Ablation rate, recoil momentum, and temperature rise in the pulp cavity were measured with and without an exogenous water drop on the tooth surface. Exogenous water enhanced ablation rate in the thick tooth in which the ablation rate on the dry surface does not increase linearly but shows plateau. Optimal exogenous water volume was shifted from 2 nl to 4 nl as the laser energy was increased from 48 mJ to 145 mJ. The magnitude of the recoil momentum was increased as the volume of exogenous water increased. The results of this study suggest that we must pay attention to the recoil momentum or recoil pressure study or the optimal and safe usage of water in the dental treatment because these mechanical effects depend on the volume of exogenous water on the tooth surface.

  • PDF

Evaluation of Mechanical Properties and Microstructure of Thermally Aged 308 and 316L Stainless Steel Welds (가속 열시효에 따른 308 및 316L 스테인리스강 용접부의 기계적 물성 및 미세구조 평가)

  • Kong, Byeong Seo;Hong, Sunghoon;Jang, Changheui;Kim, Maan-Won
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.13 no.1
    • /
    • pp.92-100
    • /
    • 2017
  • Due to the presence of ferrite phase in the finished welds, austenitic stainless steel welds (ASSWs) are considered susceptible to the thermal aging embrittlement during long-term service in light water reactor environment. In this study, the thermal aging embrittlement of typical ASSWs, E308 and ER316L welds, were evaluated after the long-term exposure up to 20,000 h at $400^{\circ}C$, which is considered as an accelerated thermal aging condition. After thermal aging, the decrease of tensile ductility and fracture toughness was observed. The microstructure observation with high resolution transmission electron microscopy revealed that spinodal decomposition in ferrite phase of both E308 and ER316L welds would be the main cause of the degradation of mechanical properties. Also, it was shown that the difference of thermal ageing embrittlement between ER316L and E308 welds was significant, such that the reduction of fracture resistance for ER316L weld was much larger than that of E308 weld.

Morroniside Protects C2C12 Myoblasts from Oxidative Damage Caused by ROS-Mediated Mitochondrial Damage and Induction of Endoplasmic Reticulum Stress

  • Hyun Hwangbo;Cheol Park;EunJin Bang;Hyuk Soon Kim;Sung-Jin Bae;Eunjeong Kim;Youngmi Jung;Sun-Hee Leem;Young Rok Seo;Su Hyun Hong;Gi-Young Kim;Jin Won Hyun;Yung Hyun Choi
    • Biomolecules & Therapeutics
    • /
    • v.32 no.3
    • /
    • pp.349-360
    • /
    • 2024
  • Oxidative stress contributes to the onset of chronic diseases in various organs, including muscles. Morroniside, a type of iridoid glycoside contained in Cornus officinalis, is reported to have advantages as a natural compound that prevents various diseases. However, the question of whether this phytochemical exerts any inhibitory effect against oxidative stress in muscle cells has not been well reported. Therefore, the current study aimed to evaluate whether morroniside can protect against oxidative damage induced by hydrogen peroxide (H2O2) in murine C2C12 myoblasts. Our results demonstrate that morroniside pretreatment was able to inhibit cytotoxicity while suppressing H2O2-induced DNA damage and apoptosis. Morroniside also significantly improved the antioxidant capacity in H2O2-challenged C2C12 cells by blocking the production of cellular reactive oxygen species and mitochondrial superoxide and increasing glutathione production. In addition, H2O2-induced mitochondrial damage and endoplasmic reticulum (ER) stress were effectively attenuated by morroniside pretreatment, inhibiting cytoplasmic leakage of cytochrome c and expression of ER stress-related proteins. Furthermore, morroniside neutralized H2O2-mediated calcium (Ca2+) overload in mitochondria and mitigated the expression of calpains, cytosolic Ca2+-dependent proteases. Collectively, these findings demonstrate that morroniside protected against mitochondrial impairment and Ca2+-mediated ER stress by minimizing oxidative stress, thereby inhibiting H2O2-induced cytotoxicity in C2C12 myoblasts.