References
- Brogden, K. A. (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3, 238-250. https://doi.org/10.1038/nrmicro1098
- Jung, H. H., Yang, S. T., Sim, J. Y., Lee, S., Lee, J. Y., Kim, H. H., Shin, S. Y. and Kim, J. I. (2010) Analysis of the solution structure of the human antibiotic peptide dermcidin and its interaction with phospholipid vesicles. BMB Rep. 43, 362-368. https://doi.org/10.5483/BMBRep.2010.43.5.362
- Zhu, W. L., Hahm, K. S. and Shin, S. Y. (2009) Cell selectivity and mechanism of action of short antimicrobial peptides designed from the cell-penetrating peptide Pep-1. J. Pept. Sci. 15, 569-575. https://doi.org/10.1002/psc.1145
- Andreu, D. and Rivas, L. (1998) Animal antimicrobial peptides: an overview. Biopolymers 47, 415-433. https://doi.org/10.1002/(SICI)1097-0282(1998)47:6<415::AID-BIP2>3.0.CO;2-D
- Kawaguchi, A., Suzuki, T., Kimura, T., Sakai, N., Ayabe, T., Sawa, H. and Hasegawa, H. (2010) Functional analysis of an alpha-helical antimicrobial peptide derived from a novel mouse defensin-like gene. Biochem. Biophys. Res. Commun. 398, 778-784. https://doi.org/10.1016/j.bbrc.2010.07.028
- Kim, H. Y. and Gladyshev, V. N. (2007) Methionine sulfoxide reductases: selenoprotein forms and roles in antioxidant protein repair in mammals. Biochem. J. 407, 321-329. https://doi.org/10.1042/BJ20070929
- Lee, B. C., Dikiy, A., Kim, H. Y. and Gladyshev, V. N. (2009) Functions and evolution of selenoprotein methionine sulfoxide reductases. Biochim. Biophys. Acta. 1790, 1471-1477. https://doi.org/10.1016/j.bbagen.2009.04.014
- Kim, H. Y. and Gladyshev, V. N. (2004) Methionine sulfoxide reduction in mammals: characterization of methionine-R-sulfoxide reductases. Mol. Biol. Cell 15, 1055-1064.
- Kim, H. Y. and Gladyshev, V. N. (2004) Characterization of mouse endoplasmic reticulum methionine-R-sulfoxide reductase. Biochem. Biophys. Res. Commun. 320, 1277-1283. https://doi.org/10.1016/j.bbrc.2004.06.078
- Wang, G., Li, X. and Wang, Z. (2009) APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res. 37, D933-937. https://doi.org/10.1093/nar/gkn823
- Krause, A., Sillard, R., Kleemeier, B., Kluver, E., Maronde, E., Conejo-Garcia, J. R., Forssmann, W. G., Schulz-Knappe, P., Nehls, M. C., Wattler, F., Wattler, S. and Adermann, K. (2003) Isolation and biochemical characterization of LEAP-2, a novel blood peptide expressed in the liver. Protein Sci. 12, 143-152. https://doi.org/10.1110/ps.0213603
- Fedders, H., Michalek, M., Grotzinger, J. and Leippe, M. (2008) An exceptional salt-tolerant antimicrobial peptide derived from a novel gene family of haemocytes of the marine invertebrate Ciona intestinalis. Biochem. J. 416, 65-75. https://doi.org/10.1042/BJ20080398
- Townes, C. L., Michailidis, G., Nile, C. J. and Hall, J. (2004) Induction of cationic chicken liver-expressed antimicrobial peptide 2 in response to Salmonella enterica infection. Infect. Immun. 72, 6987-6993. https://doi.org/10.1128/IAI.72.12.6987-6993.2004
- Maupetit, J., Derreumaux, P. and Tuffery, P. (2009) PEP-FOLD: an online resource for de novo peptide structure prediction. Nucleic Acids Res. 37, W498-503. https://doi.org/10.1093/nar/gkp323
- Makarova, O., Kamberov, E. and Margolis, B. (2000) Generation of deletion and point mutations with one primer in a single cloning step. Biotechniques 29, 970-972.
- Kumar, R. A., Koc, A., Cerny, R. L. and Gladyshev, V. N. (2002) Reaction mechanism, evolutionary analysis, and role of zinc in Drosophila methionine-R-sulfoxide reductase. J. Biol. Chem. 277, 37527-37535. https://doi.org/10.1074/jbc.M203496200
Cited by
- Porcine methionine sulfoxide reductase B3: molecular cloning, tissue-specific expression profiles, and polymorphisms associated with ear size in Sus scrofa vol.6, pp.1, 2015, https://doi.org/10.1186/s40104-015-0060-x
- Linked genetic variants on chromosome 10 control ear morphology and body mass among dog breeds vol.16, pp.1, 2015, https://doi.org/10.1186/s12864-015-1702-2