DOI QR코드

DOI QR Code

Identification of an antimicrobial peptide from human methionine sulfoxide reductase B3

  • Kim, Yong-Joon (Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine) ;
  • Kwak, Geun-Hee (Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine) ;
  • Lee, Chu-Hee (Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine) ;
  • Kim, Hwa-Young (Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine)
  • Received : 2011.05.31
  • Accepted : 2011.08.04
  • Published : 2011.10.31

Abstract

Human methionine sulfoxide reductase B3A (hMsrB3A) is an endoplasmic reticulum (ER) reductase that catalyzes the stereospecific reduction of methionine-R-sulfoxide to methionine in proteins. In this work, we identified an antimicrobial peptide from hMsrB3A protein. The N-terminal ER-targeting signal peptide (amino acids 1-31) conferred an antimicrobial effect in Escherichia coli cells. Sequence and structural analyses showed that the overall positively charged ER signal peptide had an Argand Pro-rich region and a potential hydrophobic ${\alpha}$-helical segment that contains 4 cysteine residues. The potential ${\alpha}$-helical region was essential for the antimicrobial activity within E. coli cells. A synthetic peptide, comprised of 2-26 amino acids of the signal peptide, was effective at killing Gram-negative E. coli, Klebsiella pneumoniae, and Salmonella paratyphi, but had no bactericidal activity against Gram-positive Staphylococcus aureus.

Keywords

References

  1. Brogden, K. A. (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3, 238-250. https://doi.org/10.1038/nrmicro1098
  2. Jung, H. H., Yang, S. T., Sim, J. Y., Lee, S., Lee, J. Y., Kim, H. H., Shin, S. Y. and Kim, J. I. (2010) Analysis of the solution structure of the human antibiotic peptide dermcidin and its interaction with phospholipid vesicles. BMB Rep. 43, 362-368. https://doi.org/10.5483/BMBRep.2010.43.5.362
  3. Zhu, W. L., Hahm, K. S. and Shin, S. Y. (2009) Cell selectivity and mechanism of action of short antimicrobial peptides designed from the cell-penetrating peptide Pep-1. J. Pept. Sci. 15, 569-575. https://doi.org/10.1002/psc.1145
  4. Andreu, D. and Rivas, L. (1998) Animal antimicrobial peptides: an overview. Biopolymers 47, 415-433. https://doi.org/10.1002/(SICI)1097-0282(1998)47:6<415::AID-BIP2>3.0.CO;2-D
  5. Kawaguchi, A., Suzuki, T., Kimura, T., Sakai, N., Ayabe, T., Sawa, H. and Hasegawa, H. (2010) Functional analysis of an alpha-helical antimicrobial peptide derived from a novel mouse defensin-like gene. Biochem. Biophys. Res. Commun. 398, 778-784. https://doi.org/10.1016/j.bbrc.2010.07.028
  6. Kim, H. Y. and Gladyshev, V. N. (2007) Methionine sulfoxide reductases: selenoprotein forms and roles in antioxidant protein repair in mammals. Biochem. J. 407, 321-329. https://doi.org/10.1042/BJ20070929
  7. Lee, B. C., Dikiy, A., Kim, H. Y. and Gladyshev, V. N. (2009) Functions and evolution of selenoprotein methionine sulfoxide reductases. Biochim. Biophys. Acta. 1790, 1471-1477. https://doi.org/10.1016/j.bbagen.2009.04.014
  8. Kim, H. Y. and Gladyshev, V. N. (2004) Methionine sulfoxide reduction in mammals: characterization of methionine-R-sulfoxide reductases. Mol. Biol. Cell 15, 1055-1064.
  9. Kim, H. Y. and Gladyshev, V. N. (2004) Characterization of mouse endoplasmic reticulum methionine-R-sulfoxide reductase. Biochem. Biophys. Res. Commun. 320, 1277-1283. https://doi.org/10.1016/j.bbrc.2004.06.078
  10. Wang, G., Li, X. and Wang, Z. (2009) APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res. 37, D933-937. https://doi.org/10.1093/nar/gkn823
  11. Krause, A., Sillard, R., Kleemeier, B., Kluver, E., Maronde, E., Conejo-Garcia, J. R., Forssmann, W. G., Schulz-Knappe, P., Nehls, M. C., Wattler, F., Wattler, S. and Adermann, K. (2003) Isolation and biochemical characterization of LEAP-2, a novel blood peptide expressed in the liver. Protein Sci. 12, 143-152. https://doi.org/10.1110/ps.0213603
  12. Fedders, H., Michalek, M., Grotzinger, J. and Leippe, M. (2008) An exceptional salt-tolerant antimicrobial peptide derived from a novel gene family of haemocytes of the marine invertebrate Ciona intestinalis. Biochem. J. 416, 65-75. https://doi.org/10.1042/BJ20080398
  13. Townes, C. L., Michailidis, G., Nile, C. J. and Hall, J. (2004) Induction of cationic chicken liver-expressed antimicrobial peptide 2 in response to Salmonella enterica infection. Infect. Immun. 72, 6987-6993. https://doi.org/10.1128/IAI.72.12.6987-6993.2004
  14. Maupetit, J., Derreumaux, P. and Tuffery, P. (2009) PEP-FOLD: an online resource for de novo peptide structure prediction. Nucleic Acids Res. 37, W498-503. https://doi.org/10.1093/nar/gkp323
  15. Makarova, O., Kamberov, E. and Margolis, B. (2000) Generation of deletion and point mutations with one primer in a single cloning step. Biotechniques 29, 970-972.
  16. Kumar, R. A., Koc, A., Cerny, R. L. and Gladyshev, V. N. (2002) Reaction mechanism, evolutionary analysis, and role of zinc in Drosophila methionine-R-sulfoxide reductase. J. Biol. Chem. 277, 37527-37535. https://doi.org/10.1074/jbc.M203496200

Cited by

  1. Porcine methionine sulfoxide reductase B3: molecular cloning, tissue-specific expression profiles, and polymorphisms associated with ear size in Sus scrofa vol.6, pp.1, 2015, https://doi.org/10.1186/s40104-015-0060-x
  2. Linked genetic variants on chromosome 10 control ear morphology and body mass among dog breeds vol.16, pp.1, 2015, https://doi.org/10.1186/s12864-015-1702-2