• 제목/요약/키워드: Methionine sulfoxide reductase

검색결과 11건 처리시간 0.031초

Inhibition of methionine sulfoxide reduction by dimethyl sulfoxide

  • Kwak, Geun-Hee;Choi, Seung-Hee;Kim, Jae-Ryong;Kim, Hwa-Young
    • BMB Reports
    • /
    • 제42권9호
    • /
    • pp.580-585
    • /
    • 2009
  • Dimethyl sulfoxide (DMSO) is widely used in chemistry and biology as a solvent and as a cryoprotectant. It is also used as a pharmaceutical agent for the treatment of interstitial cystitis and rheumatoid arthritis. Previous reports described DMSO as being reduced by methionine-S-sulfoxide reductase (MsrA). However, little is known about the DMSO reduction capability of methionine-R-sulfoxide reductase (MsrB) or its effect on the catalysis of methionine sulfoxide reduction. We show that mammalian MsrB2 and MsrB3 were unable to reduce DMSO. This compound inhibited MsrB2 activity but did not inhibit MsrB3 activity. We further determined that DMSO functions as an inhibitor of MsrA and MsrB2 in the reduction of methionine sulfoxides via different inhibition mechanisms. DMSO competitively inhibited MsrA activity but acted as a non-competitive inhibitor of MsrB2 activity. Our study also demonstrated that DMSO inhibits in vivo methionine sulfoxide reduction in yeast and mammalian cells.

Identification of an antimicrobial peptide from human methionine sulfoxide reductase B3

  • Kim, Yong-Joon;Kwak, Geun-Hee;Lee, Chu-Hee;Kim, Hwa-Young
    • BMB Reports
    • /
    • 제44권10호
    • /
    • pp.669-673
    • /
    • 2011
  • Human methionine sulfoxide reductase B3A (hMsrB3A) is an endoplasmic reticulum (ER) reductase that catalyzes the stereospecific reduction of methionine-R-sulfoxide to methionine in proteins. In this work, we identified an antimicrobial peptide from hMsrB3A protein. The N-terminal ER-targeting signal peptide (amino acids 1-31) conferred an antimicrobial effect in Escherichia coli cells. Sequence and structural analyses showed that the overall positively charged ER signal peptide had an Argand Pro-rich region and a potential hydrophobic ${\alpha}$-helical segment that contains 4 cysteine residues. The potential ${\alpha}$-helical region was essential for the antimicrobial activity within E. coli cells. A synthetic peptide, comprised of 2-26 amino acids of the signal peptide, was effective at killing Gram-negative E. coli, Klebsiella pneumoniae, and Salmonella paratyphi, but had no bactericidal activity against Gram-positive Staphylococcus aureus.

벼도열병균에서의 methionine sulfoxide reductase B 유전자의 분자적 특성 (Identification and Molecular Characterization of Methionine Sulfoxide Reductase B Gene in Rice Blast Fungus, Magnaporthe oryzae)

  • 김정환;김진수;정미연;최우봉
    • 생명과학회지
    • /
    • 제19권3호
    • /
    • pp.343-348
    • /
    • 2009
  • 벼도열병균은 벼의 주요 병해인 벼도열병의 원인균이다. 식물병원균의 침입 시 식물체로부터 발생하는 ROS는 식물의 방어기작으로 중요하며, 특히 아미노산의 하나인 methionine은 ROS에 의해 산화되어 methionine sulfoxide로 변화될 수 있다. 식물병원균은 식물체로 부터의 ROS에 의한 산화반응을 회피하기 위해 methionine sulfoxide reductase B (MSRB)와 같은 항산화 효소를 가지는데 본 연구에서는 벼도열병균에서의 MSRB 유전자를 동정하고 분자적 특성을 살펴보았다. MSRB 유전자는 벼도열병균의 게놈 상에 단일 유전자로 존재하며 과산화수소 처리에 의해 유전자발현이 다소 증가하는 경향을 보였다. 이러한 결과로 MSRB 유전자는 벼도열병균의 항산화 기작에 관여할 가능성이 높다고 판단된다.

Overexpression, Purification, and Preliminary X-Ray Crystallographic Studies of Methionine Sulfoxide Reductase B from Bacillus subtilis

  • Park, Ae-Kyung;Shin, Youn-Jae;Moon, Jin-Ho;Kim, Young-Kwan;Hwang, Kwang-Yeon;Chi, Young-Min
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권1호
    • /
    • pp.59-62
    • /
    • 2008
  • The peptide methionine sulfoxide reductases (Msrs) are enzymes that catalyze the reduction of methionine sulfoxide back to methionine. Because of two enantiomers of methionine sulfoxide (S and R forms), this reduction reaction is carried out by two structurally unrelated classes of enzymes, MsrA (E.C. 1.8.4.11) and MsrB (E.C. 1.8.4.12). Whereas MsrA has been well characterized structurally and functionally, little information on MsrB is available. The recombinant MsrB from Bacillus subtilis has been purified and crystallized by the hanging-drop vapor-diffusion method, and the functional and structural features of MsrB have been elucidated. The crystals belong to the trigonal space group P3, with unit-cell parameters a=b=136.096, $c=61.918{\AA}$, and diffracted to $2.5{\AA}$ resolution using a synchrotron-radiation source at Pohang Light Source. The asymmetric unit contains six subunits of MsrB with a crystal volume per protein mass $(V_M)\;of\;3.37{\AA}^3\;Da^{-1}$ and a solvent content of 63.5%.

Characterization of a novel methionine sulfoxide reductase A from tomato (Solanum lycopersicum), and its protecting role in Escherichia coli

  • Dai, Changbo;Singh, Naresh Kumar;Park, Myung-Ho
    • BMB Reports
    • /
    • 제44권12호
    • /
    • pp.805-810
    • /
    • 2011
  • Methionine sulfoxide reductase A (MSRA) is a ubiquitous enzyme that has been demonstrated to reduce the S enantiomer of methionine sulfoxide (MetSO) to methionine (Met) and can protect cells against oxidative damage. In this study, we isolated a novel MSRA (SlMSRA2) from Micro-Tom (Solanum lycopersicum L. cv. Micro-Tom) and characterized it by subcloning the coding sequence into a pET expression system. Purified recombinant protein was assayed by HPLC after expression and refolding. This analysis revealed the absolute specificity for methionine-S-sulfoxide and the enzyme was able to convert both free and protein-bound MetSO to Met in the presence of DTT. In addition, the optimal pH, appropriate temperature, and $K_m$ and $K_{cat}$ values for MSRA2 were observed as 8.5, $25^{\circ}C$, $352{\pm}25\;{\mu}M$, and $0.066{\pm}0.009\;S^{-1}$, respectively. Disk inhibition and growth rate assays indicated that SlMSRA2 may play an essential function in protecting E. coli against oxidative damage.

Dimethyl sulfoxide elevates hydrogen peroxide-mediated cell death in Saccharomyces cerevisiae by inhibiting the antioxidant function of methionine sulfoxide reductase A

  • Kwak, Geun-Hee;Choi, Seung-Hee;Kim, Hwa-Young
    • BMB Reports
    • /
    • 제43권9호
    • /
    • pp.622-628
    • /
    • 2010
  • Dimethyl sulfoxide (DMSO) can be reduced to dimethyl sulfide by MsrA, which stereospecifically catalyzes the reduction of methionine-S-sulfoxide to methionine. Our previous study showed that DMSO can competitively inhibit methionine sulfoxide reduction ability of yeast and mammalian MsrA in both in vitro and in vivo, and also act as a non-competitive inhibitor for mammalian MsrB2, specific for the reduction of methionine-R-sulfoxide, with lower inhibition effects. The present study investigated the effects of DMSO on the physiological antioxidant functions of methionine sulfoxide reductases. DMSO elevated hydrogen peroxide-mediated Saccharomyces cerevisiae cell death, whereas it protected human SK-Hep1 cells against oxidative stress. DMSO reduced the protein-carbonyl content in yeast cells in normal conditions, but markedly increased protein-carbonyl accumulation under oxidative stress. Using Msr deletion mutant yeast cells, we demonstrated the DMSO's selective inhibition of the antioxidant function of MsrA in S. cerevisiae, resulting in an increase in oxidative stress-induced cytotoxicity.

Direct Reduction of DTNB by E. coli Thioredoxin Reductase

  • Lim, Hye-Won;Lim, Chang-Jin
    • BMB Reports
    • /
    • 제28권1호
    • /
    • pp.17-20
    • /
    • 1995
  • Thioredoxin reductase is a flavoprotein oxidoreductase catalyzing the reduction of a cystine disulfide in thioredoxin. Thioredoxin, in turn, can reduce disulfide bonds in other proteins and serves as a reducing agent in enzymatic reactions such as those of ribonucleotide reductase and methionine sulfoxide reductase. In this work thioredoxin reductase was found to directly reduce DTNB in the absence of thioredoxin. This new reactivity of E. coli thioredoxin reductase was produced by relatively high concentrations of univalent cations such as $Na^+$, $K^+$, $Li^+$, and ${NH_4}^+$, and it appeared with the oxidation of NADPH. These results indicate that E. coli thioredoxin reductase may be slightly modified by univalent cations, and the modified enzyme directly reacts with DTNB. This DTNB-reducing activity offers a new assay method for E. coli thioredoxin reductase.

  • PDF

Expression, subcellular localization, and antioxidant role of mammalian methionine sulfoxide reductases in Saccharomyces cerevisiae

  • Kwak, Geun-Hee;Kim, Jae-Ryong;Kim, Hwa-Young
    • BMB Reports
    • /
    • 제42권2호
    • /
    • pp.113-118
    • /
    • 2009
  • Despite the growing body of evidence suggesting a role for MsrA in antioxidant defense, little is currently known regarding the function of MsrB in cellular protection against oxidative stress. In this study, we overexpressed the mammalian MsrB and MsrA genes in Saccharomyces cerevisiae and assessed their subcellular localization and antioxidant functions. We found that the mitochondrial MsrB3 protein (MsrB3B) was localized to the cytosol, but not to the mitochondria, of the yeast cells. The mitochondrial MsrB2 protein was detected in the mitochondria and, to a lesser extent, the cytosol of the yeast cells. In this study, we report the first evidence that MsrB3 overexpression in yeast cells protected them against $H_2O_2$-mediated cell death. Additionally, MsrB2 overexpression also provided yeast cells with resistance to oxidative stress, as did MsrA overexpression. Our results show that mammalian MsrB and MsrA proteins perform crucial functions in protection against oxidative stress in lower eukaryotic yeast cells.

모발 백발화와 관련된 melanin 생성을 촉진시키는 화합물의 연구동향 (Research Trends on Compounds that Promote Melanin Production Related to Hair Graying)

  • 김문무
    • 생명과학회지
    • /
    • 제33권5호
    • /
    • pp.445-454
    • /
    • 2023
  • 백발화는 자외선, melanin 세포 자극 호르몬(α-MSH), 줄기 세포 인자 성장인자(SCF), Wnt 및 endothelin-1 (ET-1)에 의하여 활성화되는 melanogenesis를 조절하는 신호 전달 경로가 제대로 작동하지 못하여 나타난 결과이다. 백발화를 예방하기 위하여, tyrosinase, tyrosine hydroxylase, tyrosinase-related protein (TRP)-1, TRP-2 및 microphthalmia-associated transcription factor (MITF)에 의하여 조절되는 melanogenesis를 자극하는 효과적인 합성 및 천연 화합물이 있다. 이러한 화합물은 백발화 예방을 위한 잠재성을 지니고 있다. 이 기사는 melanogenesis와 백발화와 관련된 신호 전달 경로에서 최근의 진전뿐 만 아니라 백발화의 문제를 해결하기 위한 핵심적인 전략에 대해 기술한다. 특히, 이글에서는 catalase 및 methionine sulfoxide reductase를 조절하는 항산화제, resveratrol, fisetin, quercetin 및 ginsenoside와 같은 sirtuin (SIRT) 1 activator와 같은 melanin 생성을 촉진하는 잠재적으로 효과적인 치료제에 대하여 설명한다. 또한 estrogen, androgen, progesterone 및 dihydrotestosterone를 포함하는 telomerase 발현 및 activator 뿐만 아니라, corticosteroids, calcineurin restrainer 및 palmitic acid methyl ester와 같은 백반증 억제제에 대하여 논의한다. 더불어 latanoprost, erlotinib, imatinib, tamoxifen, 및 levodopa와 같은 백발화를 억제할 수 있는 화합물에 대해서도 탐구한다. 결론적으로 이 기사는 모발 백발화와 관련된 melanin 생성을 촉진시키는 화합물에 대한 최근의 연구동향을 고찰한다.

The protein truncation caused by fusion of PEP-1 peptide and protective roles of transduced PEP-1-MsrA in skin cells

  • Lee, Tae-Hyung;Choi, Seung-Hee;Kim, Hwa-Young
    • BMB Reports
    • /
    • 제44권4호
    • /
    • pp.256-261
    • /
    • 2011
  • PEP-1 peptide has been used for transduction of native protein into mammalian cells. This work describes the findings that the fusion of PEP-1 to target proteins led to protein truncation likely in a non-protein-specific manner. Approximately 75% of PEP-1-MsrA fusion protein was truncated in the N-terminal region of MsrA between Lys-27 and Val-28 during expression in Escherichia coli and purification. This large protein truncation was also observed in another PEP-1 fused protein, PEP-1-MsrB2, in the N-terminal region of MsrB2. The full-length PEP-1-MsrA protein was rapidly transduced into keratinocyte cells within 15 min. The transduced PEP-1-MsrA was functionally active and could protect skin cells against oxidative stress- and ultraviolet radiation-induced cell death. Collectively, our data demonstrated the protective roles of MsrA in skin cells and, moreover, may raise a concern of protein truncation caused by fusion of PEP-1 about the general use of this peptide for protein transduction.