DOI QR코드

DOI QR Code

Identification and Molecular Characterization of Methionine Sulfoxide Reductase B Gene in Rice Blast Fungus, Magnaporthe oryzae

벼도열병균에서의 methionine sulfoxide reductase B 유전자의 분자적 특성

  • Kim, Jeong-Hwan (Department of Biomaterial Control, Dongeui University) ;
  • Kim, Jin-Soo (Department of Biomaterial Control, Dongeui University) ;
  • Jeong, Mi-Yeon (Department of Biotechnology and Bioengineering, Dongeui University) ;
  • Choi, Woo-Bong (Department of Biomaterial Control, Dongeui University)
  • 김정환 (동의대학교 바이오물질제어학과) ;
  • 김진수 (동의대학교 바이오물질제어학과) ;
  • 정미연 (동의대학교 생명공학과) ;
  • 최우봉 (동의대학교 바이오물질제어학과)
  • Published : 2009.03.31

Abstract

Magnaporthe oryzae, a major cause of rice blast, is one of the most destructive plant fungal pathogens. Secretion of reactive oxygen species (ROS) during the infection phase of plant pathogenic fungus plays a key role in the defense mechanism of a plant. ROS causes oxidative damage and functional modification to the proteins in a pathogenic fungus. Methionine, especially, is a major target of ROS, which oxidizes it to methionine sulfoxide. To survive from the attack of ROS, plant pathogenic fungus has antioxidative systems - one example would be methionine sulfoxide reductase B (MSRB), which reverses the oxidative alteration of methionine to methionine sulfoxide. In the present study, identification and molecular characterization of the MSRB gene in M. oryzae KJ201 were investigated. The MSRB gene was amplified by PCR from the M. oryzae KJ201 genomic DNA. The copy number of MSRB in the genome of M. oryzae KJ201 was identified by Southern blot analysis, which revealed that the gene exists as a single copy. To study the molecular function of an MSRB gene, the expression level of the MSRB gene was assayed with hydrogen peroxide treatment by Northern blot analysis and RT-PCR. The expression of the MSRB gene was increased by treatment of hydrogen peroxide, without significant correlation to hydrogen peroxide concentrations. These results indicate that the MSRB gene in M. oryzae KJ201 could contribute to protection against plant defense compounds such as ROS and offer a novel strategy for the control of rice blast.

벼도열병균은 벼의 주요 병해인 벼도열병의 원인균이다. 식물병원균의 침입 시 식물체로부터 발생하는 ROS는 식물의 방어기작으로 중요하며, 특히 아미노산의 하나인 methionine은 ROS에 의해 산화되어 methionine sulfoxide로 변화될 수 있다. 식물병원균은 식물체로 부터의 ROS에 의한 산화반응을 회피하기 위해 methionine sulfoxide reductase B (MSRB)와 같은 항산화 효소를 가지는데 본 연구에서는 벼도열병균에서의 MSRB 유전자를 동정하고 분자적 특성을 살펴보았다. MSRB 유전자는 벼도열병균의 게놈 상에 단일 유전자로 존재하며 과산화수소 처리에 의해 유전자발현이 다소 증가하는 경향을 보였다. 이러한 결과로 MSRB 유전자는 벼도열병균의 항산화 기작에 관여할 가능성이 높다고 판단된다.

Keywords

References

  1. Bar-Noy, S. and J. Moskovitz. 2002. Mouse methionine sulfoxide reductase B: effect of selenocysteine incorporation on its activity and expression of the seleno-containing enzyme in bacterial and mammalian cells. Biochem. Biophys. Res. Commun. 297, 956-961 https://doi.org/10.1016/S0006-291X(02)02314-8
  2. Boschi-Muller, S., A. Olry, M. Antoine, and G. Branlant. 2005. The enzymology and biochemistry of methionine sulfoxide reductases. Biochim. Biophys. Acta. 1703, 231-238 https://doi.org/10.1016/j.bbapap.2004.09.016
  3. Couch, B. C. and L. M. Kohn. 2002. A multilocus gene genealogy concordant with host preference indicates segregation of new species, Magnaporthe oryzae from M. grisea. Mycologia 94, 683-693 https://doi.org/10.2307/3761719
  4. Dean, R. A., N. J. Talbot, D. J. Ebbole, M. L. Farman, T. K. Mitchell, M. J. Orbach, M. Thon, R. Kulkarni, J. R. Xu, H. Pan, N. D. Read, Y. H. Lee, I. Carbone, D. Brown, Y. Y. Oh, N. Donofrio, J. S. Jeong, D. M. Soanes, S. Djonovic, E. Kolomiets, C. Rehmeyer, W. Li, M. Harding, S. Kim, M. H. Lebrun, H. Bohnert, S. Coughlan, J. Butler, S. Calvo, L. J. Ma, R. Nicol, S. Purcell, C. Nusbaum, J. E. Galagan, and B. W. Birren. 2005. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434, 980-986 https://doi.org/10.1038/nature03449
  5. Etienne, F., D. Spector, N. Brot, and H. Weissbach. 2003. A methionine sulfoxide reductase in Escherichia coli that reduces the R enantiomer of methionine sulfoxide. Biochem. Biophys. Res. Commun. 300, 378-382 https://doi.org/10.1016/S0006-291X(02)02870-X
  6. Ezraty, B., L. Aussel, and F. Barras. 2005. Methionine sulfoxide reductases in prokaryotes. Biochim. Biophys. Acta. 1703, 221-229 https://doi.org/10.1016/j.bbapap.2004.08.017
  7. Ford, T. L., J. T. Cooley, and P. Christou. 1994. Current status for gene transfer into rice utilizing variety-independent delivery systems. CAB International. Ziegler, R. S., S. A. Leong, and P. S. Teng, UK
  8. Jackob, M. 2005. Methionine sulfoxide reductases: ubiquitous enzymes involved in antioxidant defense, protein regulation, and prevention of aging-associated diseases. Biochim. Biophys. Acta. 1703, 213-219 https://doi.org/10.1007/s12104-010-9217-x
  9. Jeon, J., S. Y. Park, M. H. Chi, J. Choi, J. Park, H. S. Rho, S. Kim, J. Goh, S. Yoog, J. Choi, J. Y. Park, M. Yi, S. Yang, M. J. Kwon, S. S. Han, B. R. Kim, C. H. Khang, B. Park, S. E. Lim, K. Jung, S. Kong, M. Karunakaran, H. S. Oh, H. Kim, S. Kim, J. Park, S. Kang, W. B. Choi, S. Kang, and Y. H. Lee. 2007. Genome-wide functional analysis of pathogenicity genes in the rice blast fungus. Nat. Genet. 39, 561-565 https://doi.org/10.1038/ng2002
  10. Jones, D. A. and D. Takemoto. 2004. Plant innate immunity- direct and indirect recognition of general and specific pathogen-associated molecules. Curr. Opin. Immunol. 16, 48-62 https://doi.org/10.1016/j.coi.2003.11.016
  11. Kauffmann, B., A. Aubry, and F. Favier. 2005. The three-dimensional structures of peptide methionine sulfoxide reductases: current knowledge and open questions. Biochim. Biophys. Acta. 1703, 249-260 https://doi.org/10.1016/j.bbapap.2004.09.008
  12. Moskovitz, J., V. K. Singh, J. Requena, B. J. Wilkinson, R. K. Jayaswal, and E. R. Stadtman. 2002. Purification and characterization of methionine sulfoxide reductases from mouse and Staphylococcus aureus and their substrate stereospecificity. Biochem. Biophys. Res. Commun. 290, 62-65 https://doi.org/10.1006/bbrc.2001.6171
  13. Murray, M. G. and W. F. Thomson. 1980. Rapid isolation of high molecular weight plant DNA. Necleic Acids Research 8, 4321-4325 https://doi.org/10.1093/nar/8.19.4321
  14. Nimchuk, Z., T. Eulgem, B. F. Holt, and J. L. Dangl. 2003. Recognition and response in the plant immune system. Annu. Rev. Genet. 37, 579-609 https://doi.org/10.1146/annurev.genet.37.110801.142628
  15. Ou, S. H. 1985. Rice disease. Commonwealth Agricultural Bureaux, Wallingford, England. 135, 1011-1019
  16. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A laboratory manual. 2nd eds., Cold Spring Harbor Press. New York
  17. Skaar, E. P., D. M. Tobiason, J. Quick, R. C. Judd, H. Weissbach, F. Etienne, N. Brot, and H. S. Seifert. 2002. The outer membrane localization of the Neisseria gonorrhoeae MsrA/B is involved in survival against reactive oxygen species. Proc. Natl. Acad. Sci. U. S. A. 99, 10108-10113 https://doi.org/10.1073/pnas.152334799
  18. Talbot, N. and A. Foster. 2001. Genetics and genomics of the rice blast fungus Magnaporthe grisea: developing an experimental model for understanding fungal diseases of cereals. Adv. Bot. Res. 34, 263-287 https://doi.org/10.1016/S0065-2296(01)34011-9
  19. Talbot, N. J., Y. P. Salch, M. Ma, and J. E. Hamer. 1993. Karyotypic cariation within clonal lineages of the rice blast fungus, Magnaporthe grisea. Appl. Environ. Microbiol. 59, 585-593
  20. Valent, B. 1990. Rice blast as a model system for plant pathology. Phytopathology 80, 33-36 https://doi.org/10.1094/Phyto-80-33
  21. Vougier, S., J. Mary, N. Dautin, J. Vinh, B. Friguet, and D. Ladant. 2004. Essential role of methionine residues in calmodulin binding to Bordetella pertussis adenylate cyclase, as probed by selective oxidation and repair by the peptide methionine sulfoxide reductases. J. Biol. Chem. 279, 30210-30218 https://doi.org/10.1074/jbc.M400604200
  22. Zeigler, R. S., S. A. Leong, and P. S. Teeng. 1994. Rice Blast Disease. CAB International, Wallingford