References
- Clapes, P., Torres-Luis, J., and Adlercreutz, P. (1995) Enzyme peptide synthesis in low water content systems: preparative enzymatic synthesis of (Leu)-and (Met)-enkephalin derivatives. Bioinorg. Ned. Chem. 3, 244-255.
- Morihara, K. (1967) The specificity of various neutral and alkaline proteins from microorganisms. Biochem. Biophys. Res. Commun. 26, 657-661.
- Colmax, M., Jansonius, J. N., and Matthews, B. W. (1972) The structure of thermolysin: an electron density map at 2.3 Å resolution. J. Mol. Biol. 70, 701-724. https://doi.org/10.1016/0022-2836(72)90569-4
-
Pauptit, R. A., Karlsson, .R, Picot, D., Jenkins, J. A., Nikolaus-Reimer, A. S., and Jansonius, J. N. (1988) Crystal structure of neutral protease from Bacillus cereus refined at 3.0
${\AA}$ resolution and comparison with the homologous but more thermostable enzyme thermolysin. J. Mol. Biol. 199, 525-537. https://doi.org/10.1016/0022-2836(88)90623-7 -
Thayer, P. M., Flaherty, K. M., and McKay, D. B. (1991) Three-dimensional structure of the elastase of Pseudomonas aeruginosa at 1.5-
${\AA}$ resolution. J. Biol. Chem. 266, 2864-2871. - Eijsink, V. G. H., Veltman, O. R., Aukema, W., Vriend, G. and Venema, G. (1995) Structural determinants of the stability of thermolysin-like proteinases. Nat. Struct. Mol. Biol. 2, 374-379. https://doi.org/10.1038/nsb0595-374
- Veltman, O. R., Vriend, G., Van den Burg, B., Hardy, F., Venema, G., and Eijsink, V. G. H. (1997) Engineering thermolysin-like proteases whose thermostability is largely independent of calcium. FEBS Lett. 405, 241-244. https://doi.org/10.1016/S0014-5793(97)00193-2
- Asghari, S. M., Pazhang, M., Ehtesham, S., Karbalaei-Heidari, H. R., Taghdir, M., Sadeghizadeh, M., Naderi-Manesh, H. and Khajeh, K. (2010) Remarkable improvements of a neutral protease activity and stability share the same structural origins. Protein Eng. Des. Sel. 23, 599-606. https://doi.org/10.1093/protein/gzq031
- Badoei-Dalfard, A., Khajeh, K., Asghari, S. M., Ranjbar, B., and Karbalaei-Heidari, H. R. (2010) Enhanced activity and stability in the presence of organic solvents by increased active site polarity and stabilization of a surface loop in a metalloprotease. J. Biochem. 148, 231-238. https://doi.org/10.1093/jb/mvq057
- Imanaka, T., Shibazaki, M., and Takagi, M. (1986) A new way of enhancing the thermostability of proteases. Nature 324, 695-697. https://doi.org/10.1038/324695a0
- Carrea, G., and Riva, S. (2000) Properties and synthetic applications of enzymes in organic solvents. Angew. Chem. Int. 39, 2226-2254. https://doi.org/10.1002/1521-3773(20000703)39:13<2226::AID-ANIE2226>3.0.CO;2-L
- Fisher, C. L., and Pei, G. K. (1997) Modification of a PCR-based site-directed mutagenesis method. BioTechniques 23, 570-574.
Cited by
- Biochemical characterization of ferredoxin-NADP+ reductase interaction with flavodoxin in Pseudomonas putida vol.45, pp.8, 2012, https://doi.org/10.5483/BMBRep.2012.45.8.071