• Title/Summary/Keyword: group algebra

Search Result 185, Processing Time 0.019 seconds

Studying Solutions of a System of PDE Through Representations of D4

  • SAENKARUN, SARAWUT
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.2
    • /
    • pp.233-249
    • /
    • 2015
  • This paper is concerned with applications of representations of the Lie group of class $D_4$ to PDE. A realization of all irreducible finite-dimensional representations of $D_4$ is found and their application to a study of solutions of some systems of partial differential equations is given.

ON CONJUGATE POINTS OF THE GROUP H(2, 1)

  • Jang, Chang-Rim;Park, Keun;Lee, Tae-Hoon
    • East Asian mathematical journal
    • /
    • v.22 no.2
    • /
    • pp.249-257
    • /
    • 2006
  • Let n be a 2-step nilpotent Lie algebra which has an inner product <,> and has an orthogonal decomposition $n=\delta{\oplus}\varsigma$ for its center $\delta$ and the orthogonal complement $\varsigma\;of\;\delta$. Then Each element Z of $\delta$ defines a skew symmetric linear map $J_Z:\varsigma{\rightarrow}\varsigma$ given by $=$ for all $X,\;Y{\in}\varsigma$. Let $\gamma$ be a unit speed geodesic in a 2-step nilpotent Lie group H(2, 1) with its Lie algebra n(2, 1) and let its initial velocity ${\gamma}$(0) be given by ${\gamma}(0)=Z_0+X_0{\in}\delta{\oplus}\varsigma=n(2,\;1)$ with its center component $Z_0$ nonzero. Then we showed that $\gamma(0)$ is conjugate to $\gamma(\frac{2n{\pi}}{\theta})$, where n is a nonzero intger and $-{\theta}^2$ is a nonzero eigenvalue of $J^2_{Z_0}$, along $\gamma$ if and only if either $X_0$ is an eigenvector of $J^2_{Z_0}$ or $adX_0:\varsigma{\rightarrow}\delta$ is not surjective.

  • PDF

DERIVATION MODULES OF GROUP RINGS AND INTEGERS OF CYCLOTOMIC FIELDS

  • Chung, I.Y.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.20 no.1
    • /
    • pp.31-36
    • /
    • 1983
  • Let R be a commutative ring with 1, and A a unitary commutative R-algebra. By a derivation module of A, we mean a pair (M, d), where M is an A-module and d: A.rarw.M and R-derivation, i.e., d is an R-linear mapping such that d(ab)=a)db)+b(da). A derivation module homomorphism f:(M,d).rarw.(N, .delta.) is an A-homomorphism f:M.rarw.N such that f.d=.delta.. A derivation module of A, (U, d), there exists a unique derivation module homomorphism f:(U, d).rarw.(M,.delta.). In fact, a universal derivation module of A exists in the category of derivation modules of A, and is unique up to unique derivation module isomorphisms [2, pp. 101]. When (U,d) is a universal derivation module of R-algebra A, the A-module U is denoted by U(A/R). For out convenience, U(A/R) will also be called a universal derivation module of A, and d the R-derivation corresponding to U(A/R).

  • PDF

CONJUGATE LOCI OF 2-STEP NILPOTENT LIE GROUPS SATISFYING J2z = <Sz, z>A

  • Jang, Chang-Rim;Lee, Tae-Hoon;Park, Keun
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.6
    • /
    • pp.1705-1723
    • /
    • 2008
  • Let n be a 2-step nilpotent Lie algebra which has an inner product <, > and has an orthogonal decomposition $n\;=z\;{\oplus}v$ for its center z and the orthogonal complement v of z. Then Each element z of z defines a skew symmetric linear map $J_z\;:\;v\;{\longrightarrow}\;v$ given by <$J_zx$, y> = for all x, $y\;{\in}\;v$. In this paper we characterize Jacobi fields and calculate all conjugate points of a simply connected 2-step nilpotent Lie group N with its Lie algebra n satisfying $J^2_z$ = A for all $z\;{\in}\;z$, where S is a positive definite symmetric operator on z and A is a negative definite symmetric operator on v.

ON THE TOPOLOGY OF THE DUAL SPACE OF CROSSED PRODUCT C*-ALGEBRAS WITH FINITE GROUPS

  • Kamalov, Firuz
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.391-397
    • /
    • 2017
  • In this note we extend our previous result about the structure of the dual of a crossed product $C^*$-algebra $A{\rtimes}_{\sigma}G$, when G is a finite group. We consider the space $\tilde{\Gamma}$ which consists of pairs of irreducible representations of A and irreducible projective representations of subgroups of G. Our goal is to endow $\tilde{\Gamma}$ with a topology so that the orbit space e $G{\backslash}{\tilde{\Gamma}}$ is homeomorphic to the dual of $A{\rtimes}_{\sigma}G$. In particular, we will show that if $\widehat{A}$ is Hausdorff then $G{\backslash}{\tilde{\Gamma}}$ is homeomorphic to $\widehat{A{\rtimes}_{\sigma}G}$.

Designing a Microworld for Recursive Pasterns and Algebra (재귀적 패턴과 거북 마이크로월드 설계)

  • Kim Hwa-Kyung
    • The Mathematical Education
    • /
    • v.45 no.2 s.113
    • /
    • pp.165-176
    • /
    • 2006
  • In this paper, we consider changes of algebra strands around the world. And we suggest needs of designing new computer environment where we make and manipulate geometric recursive patterns. For this purpose, we first consider relations among symbols, meanings and patterns. And we also consider Logo environment and characterize algebraic features. Then we introduce L-system which is considered as action letters and subgroup of turtle group. There are needs to be improved since there exists some ambiguity between sign and action. Based on needs of improving the previous L-system, we suggest new commands in JavaMAL microworld. So we design a microworld for recursive patterns and consider meanings of letters in new environments. Finally, we consider the method to integrate L-system and other existing microworlds, such as Logo and DGS. Specially, combining Logo and DGS, we consider the movement of such tiles and folding nets by L-system commands. And we discuss possible benefits in this environment.

  • PDF

JORDAN AUTOMORPHIC GENERATORS OF EUCLIDEAN JORDAN ALGEBRAS

  • Kim, Jung-Hwa;Lim, Yong-Do
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.3
    • /
    • pp.507-528
    • /
    • 2006
  • In this paper we show that the Koecher's Jordan automorphic generators of one variable on an irreducible symmetric cone are enough to determine the elements of scalar multiple of the Jordan identity on the attached simple Euclidean Jordan algebra. Its various geometric, Jordan and Lie theoretic interpretations associated to the Cartan-Hadamard metric and Cartan decomposition of the linear automorphisms group of a symmetric cone are given with validity on infinite-dimensional spin factors

A NOTE ON BILATERAL SEMIDIRECT PRODUCT DECOMPOSITIONS OF SOME MONOIDS OF ORDER-PRESERVING PARTIAL PERMUTATIONS

  • Fernandes, Vitor H.;Quinteiro, Teresa M.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.495-506
    • /
    • 2016
  • In this note we consider the monoid $\mathcal{PODI}_n$ of all monotone partial permutations on $\{1,{\ldots},n\}$ and its submonoids $\mathcal{DP}_n$, $\mathcal{POI}_n$ and $\mathcal{ODP}_n$ of all partial isometries, of all order-preserving partial permutations and of all order-preserving partial isometries, respectively. We prove that both the monoids $\mathcal{POI}_n$ and $\mathcal{ODP}_n$ are quotients of bilateral semidirect products of two of their remarkable submonoids, namely of extensive and of co-extensive transformations. Moreover, we show that $\mathcal{PODI}_n$ is a quotient of a semidirect product of $\mathcal{POI}_n$ and the group $\mathcal{C}_2$ of order two and, analogously, $\mathcal{DP}_n$ is a quotient of a semidirect product of $\mathcal{ODP}_n$ and $\mathcal{C}_2$.