• Title/Summary/Keyword: groundwater development

Search Result 636, Processing Time 0.025 seconds

Impacts of Fresh and Saline Groundwater Development in Sungsan Watershed, Jeju Island (제주도 성산유역의 담수와 염수 지하수 개발의 영향)

  • Park, Namsik;Koh, Byoung-Ryoun;Lim, Youngduck
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.7
    • /
    • pp.783-794
    • /
    • 2013
  • Saline groundwater, in addition to fresh groundwater, is actively developed for inland aqua culture in Jeju Island where groundwater is practically the only source of freshwater. In this work we analyzed impacts of saline and fresh groundwater development on groundwater systems in Sungsan subwatershed in Jeju. A sharp-interface model was used to simulate fresh and saline groundwater flows. Withdrawal of freshwater imparted adverse impacts by lowering groundwater level and inducing saltwater encroachment. Withdrawal of saline water imparted mixed results: on one hand it lowered groundwater level, on the other hand it reduced saltwater encroachments. However, freshwater development lowered groundwater level much more than salinewater development did. Modified Ghyben-Herzberg ratio was developed for a transition zone with finite width. Comparison against observed data resulted in fair agreement.

Reviewing the Applications of Three Countries' Ground Water Flow Modeling Regulatory Guidelines to Nuclear Facilities in Korea

  • Lee, Chung-Mo;Hamm, Se-Yeong;Hyun, Seung Gyu;Cheong, Jae-Yeol;Wei, Ming Liang
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.3
    • /
    • pp.1-9
    • /
    • 2017
  • The numerical analysis of groundwater flow is indispensable for predicting problems associated with water resource development, civil works, environmental hazards, and nuclear power plant construction. Korea lacks public regulatory procedures and guidelines for groundwater flow modeling, especially in nuclear facility sites, which makes adequate evaluation difficult. Feasible step-by-step guidelines are also unavailable. Consequently, reports on groundwater flow modeling have low-grade quality and often present controversial opinions. Additionally, without public guidelines, maintaining consistency in reviewing reports and enforcing laws is more challenging. In this study, the guidelines for groundwater flow modeling were reviewed for three countries - the United States (Documenting Groundwater Modeling at Sites Contaminated with Radioactive Substances), Canada (Guidelines for Groundwater Modelling to Assess Impacts of Proposed Natural Resource Development Activities), and Australia (Australian Groundwater Modelling Guidelines), with the aim of developing groundwater flow modeling regulatory guidelines that can be applied to nuclear facilities in Korea, in accordance with the Groundwater Act, Environmental Impact Assessment Act, and the Nuclear Safety Act.

An Analysis of Groundwater Level Fluctuation Caused by Construction of Groundwater Dam (지하댐 건설에 따른 유역 내 지하수위 변화 특성 해석)

  • Kim, Jong-Tae;Kim, Man-Il;Chung, Il-Moon;Kim, Nam-Won;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.19 no.2
    • /
    • pp.227-233
    • /
    • 2009
  • Most of hydrological processes of groundwater recharge generally are occupied a rainfall, and recharged an aquifer along infiltrate into subsurface. These processes mainly have an influence by hydrological characteristics and topographic gradient of the aquifer. Development of water resources and its management is not good because of temporal and spatial disproportion in local rainfall. In order to deal with insufficiency of water resources from now on, development of groundwater dam requires a plan of a sustainable of new water resources. These are necessary that investigation of construction area of groundwater dam, effective groundwater development interconnected with surface water and groundwater, and assessment of an application of groundwater dam for utilization of water resources. Tn this study we were derived the input data by geological survey, hydraulic and hydrological analysis around Hoengchun-river, located in Hadong-gun, Gyeongsangnam Province where is a plan area for construction of groundwater dam. Based on input data we were carried out the interconnected analysis of surface water and groundwater using the SWAT-MODFLOW, and predicted groundwater fluctuation of its construction before and after.

Remediation of Contaminated Groundwater: Change of Paradigm for Sustainable Use

  • Lee, Jin-Yong;Lee, Kang-Kun
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.6
    • /
    • pp.1-7
    • /
    • 2013
  • Groundwater development and use have been increasing in Korea causing frequent occurrences of related hazards such as groundwater level decline, land subsidence, and groundwater contamination. To tackle these groundwater problems, central and local governments have set-up and maintained many groundwater monitoring programs such as the National Groundwater Monitoring Network and the Groundwater Quality Monitoring Network, which collect very valuable data on the overall status of domestic groundwater to aid proper groundwater management. However, several problems mainly related to the remediation of contaminated groundwater remain unresolved. Recently, there have been some incidents related to the contamination of groundwater, and these have drawn the concern of the Korean people. Although groundwater contamination has been investigated in detail, actual groundwater remediation work has not yet been implemented. The remediation of the contaminated groundwater must begin immediately in order to sustain the eco-system service of clean groundwater and enhance the welfare of the Korean people.

Development of Automatic Event Detection Algorithm for Groundwater Level Rise (지하수위 상승 자동 이벤트 감지 알고리즘 개발)

  • Park, Jeong-Ann;Kim, Song-Bae;Kim, Min-Sun;Kwon, Ku-Hung;Choi, Nag-Choul
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.6
    • /
    • pp.954-962
    • /
    • 2010
  • The objective of this study was to develop automatic event detection algorithm for groundwater level rise. The groundwater level data and rainfall data in July and August at 37 locations nationwide were analyzed to develop the algorithm for groundwater level rise due to rainfall. In addition, the algorithm for groundwater level rise by ice melting and ground freezing was developed through the analysis of groundwater level data in January. The algorithm for groundwater level rise by rainfall was composed of three parts, including correlation between previous rainfall and groundwater level, simple linear regression analysis between previous rainfall and groundwater level, and diagnosis of groundwater level rise due to new rainfall. About 49% of the analyzed data was successfully simulated for groundwater level rise by rainfall. The algorithm for groundwater level rise due to ice melting and ground freezing included graphic analysis for groundwater level versus time (day), simple linear regression analysis for groundwater level versus time, and diagnosis of groundwater level rise by new ice melting and ground freezing. Around 37% of the analyzed data was successfully simulated for groundwater level rise due to ice melting and ground freezing. The algorithms from this study would help develop strategies for sustainable development and conservation of groundwater resources.

A Method of Estimating Conservative Potential Amount of Groundwater (보수적 지하수 개발가능량 산정 방안)

  • Chung, Il-Moon;Kim, Nam Won;Lee, Jeongwoo;Lee, Jeong Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1797-1806
    • /
    • 2014
  • By far, groundwater management has been conducted by 'safe yield' policy based on the estimation of annual average of groundwater recharge throughout the world. However, as groundwater recharge show spatiotemporal variation, dynamic analysis must be carried out to evaluate the sustainable groundwater resources. In this study, an integrated surface-groundwater model, SWAT-MODFLOW was used to compute the spatial distribution of groundwater recharge in Gyungju region. Frequency analysis is adopted to evaluate the existing values of potential amount of groundwater development which is made by the 10 year drought frequency rainfall multiplied by recharge coefficient. The conservative methods for estimating recharge rates of 10 year drought frequency in subbains are newly suggested and compared with the existing values of potential amount of groundwater development. This process will promote the limitations for existing precesses used for computing potential amount of groundwater development.

Evaluation of Potential Amount of Groundwater Development in Chungju Basin by Using Watershed Hydrologic Model and Frequency Analysis (유역수문모형과 빈도해석을 이용한 충주댐 상류유역 지하수 개발가능량의 평가)

  • Lee, Jeong-Eun;Kim, Nam-Won;Chung, Il-Moon;Lee, Jeong-Woo
    • Economic and Environmental Geology
    • /
    • v.41 no.4
    • /
    • pp.443-451
    • /
    • 2008
  • Memon(1995) pointed out that the groundwater recharge from the precipitation is affected by various factors such as the occurrence, intensity, duration, and seasonal distribution of rainfall; air temperature, humidity, and wind velocity; the character and thickness of the soil layer above the water table; vegetated cover, soil moisture content, depth to the water table, topography; and land use. To reflect above factors, groundwater recharge in Chungju basin is computed by using the SWAT-K which is a longterm continuous watershed hydrologic model. Frequency analysis is adopted to evaluate the existing values of potential amount of groundwater development which is made by the 10 year drought frequency rainfall multiplied by recharge coefficient. In this work, the recharge rates of 10 year drought frequency in subbains were computed and compared with the existing values of potential amount of groundwater development. This process could point out the problems of existing precesses used for computing potential amount of groundwater development.

Comparative Analysis of Resources Characteristics for Deep Ocean water and Brine Groundwater (해양심층수와 지하염수의 자원특성 비교분석)

  • Mun, Deok-Su;Jeong, Dong-Ho;Kim, Hyeon-Ju
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.333-335
    • /
    • 2003
  • Deep Ocean Water is formed within restricted area including polar sea (high latitude) by cooling of surface seawater and globally circulated in the state of insolation with surface seawater. Although not as obvious as estuaries mixing, Brine groundwater is mixture of recirculated seawater and groundwater. Seawater having high osmotic pressure infiltrate into unconfined aquifer where is connected to the sea. The ions dissolved in seawater are present in constant proportions to each other and to the total salt content of seawater. However deviation in ion proportions have been observed in some brine groundwater. Some causes of these exception to the Rule of constant proportions are due to many chemical reactions between periphery soil and groundwater. While Deep Ocean Water (DOW) have a large quantity of functional trace metals and biological affinity relative to brine groundwater, DOW have relatively small amount of harmful bacteria and artificial pollutants.

  • PDF

The Support System for Groundwater Development Design using GIS (GIS를 이용한 지하수개발 설계지원 시스템)

  • 김만규
    • Spatial Information Research
    • /
    • v.9 no.2
    • /
    • pp.207-225
    • /
    • 2001
  • This study develops a GIS-based system which examines the adequacy of the Groundwater development project before the actual designing of the project. A system environment is constructed in order to efficiently and scientifically manage and analyze data related to Groundwater through a Server/Client environment. For this programs such as GIS S/W ArcVies3.2, RDBMS ORACLE, ArcSDE (Spatial Database Engine) are used. WHPA and AQTESOLV are employed as a underground water simulation program and Scripts, a language for ArcView, is used to develop graphic user interface (GUI). Using the system developed here, we can transfer simulation results obtained by WHPA regarding Groundwater levels in new development projects into GIS. We can also judge whether a Groundwater development project should be permitted through examining overlaps of th effects of the development and comparing with o pollutants. At the same time, the system has a feature of supporting Groundwater development and based designing through judging the proper amount of Groundwater in a new project. It is also possible to easily and quickly prepare charts and reports using the outputs of the system. Since a two-tiered system which shares DB using inter-and intranets is developed, all the departments in the ministry of agriculture and forest and the agriculture base corporation can share accurate, reliable and latest information related to Groundwater.

  • PDF

Development of the Mathematical Model to Calculate Groundwater Ages Using Tritium and Analysis on Groundwater Flow Times around the Samkwang Mine (트리튬을 이용한 지하수 연대측정 수학모델 개발 및 삼광광산 주변 지하수 유동시간 분석)

  • 김계남;구자공;김천수
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.2 no.2
    • /
    • pp.72-77
    • /
    • 1995
  • Flow times of the groundwater in the gneiss near Samkwang mine in Korea were estimated through the development of a mathematical model, the field hydraulic tests, and the analysis of tritium concentration of the groundwater and rainfall sampled in the study positions. Results of this study we as follows: (1) The mathematical model to calculate the age of groundwater was developed considering the tritium concentrations of rainfall precipitated in the studied area for period 1961 to 1993. (2) The ages of the groundwater in the tunnel 44, 92, 102, and 205 m below the surface were estimated at 2, 0, 4.0, 4.5, and 9.0 years, respectively. These results were verified by the data on the tritium concentrations of the groundwater in the tunnel for period 1991 to 1993.

  • PDF