Evaluation of Potential Amount of Groundwater Development in Chungju Basin by Using Watershed Hydrologic Model and Frequency Analysis

유역수문모형과 빈도해석을 이용한 충주댐 상류유역 지하수 개발가능량의 평가

  • 이정은 (한국건설기술연구원 수문연구실) ;
  • 김남원 (한국건설기술연구원 수문연구실) ;
  • 정일문 (한국건설기술연구원 수문연구실) ;
  • 이정우 (한국건설기술연구원 수문연구실)
  • Published : 2008.08.28

Abstract

Memon(1995) pointed out that the groundwater recharge from the precipitation is affected by various factors such as the occurrence, intensity, duration, and seasonal distribution of rainfall; air temperature, humidity, and wind velocity; the character and thickness of the soil layer above the water table; vegetated cover, soil moisture content, depth to the water table, topography; and land use. To reflect above factors, groundwater recharge in Chungju basin is computed by using the SWAT-K which is a longterm continuous watershed hydrologic model. Frequency analysis is adopted to evaluate the existing values of potential amount of groundwater development which is made by the 10 year drought frequency rainfall multiplied by recharge coefficient. In this work, the recharge rates of 10 year drought frequency in subbains were computed and compared with the existing values of potential amount of groundwater development. This process could point out the problems of existing precesses used for computing potential amount of groundwater development.

지하수 함양은 수문학적으로 복잡한 프로세스로서 강우의 빈도, 강도, 지속시간, 계절적 분포 뿐 아니라 온도, 습도, 풍속과 같은 기상인자, 그리고 지하수위 상부에 존재하는 토양 및 암반층의 특성과 깊이, 지표의 지형과 식생분포 및 토지이용과도 관련된다(Memon, 1995). 이러한 지하수 함양량의 영향요소를 반영하기 위해 연속 유역수문모형인 SWAT-K를 이용하여 충주댐 상류 유역의 지하수 함양량을 계산하였다. 우리나라에서는 10년 빈도 갈수시 강수량에 함양계수를 곱하여 지역별 개발가능량을 산정한다. 본 연구에서는 빈도해석을 통한 10년 빈도 갈수시의 함양량을 추정, 이를 기존 개발가능량 값과 비교, 검토하는 방식으로 충주댐 상류유역의 지하수 개발가능량을 평가하였으며, 이같은 계산 절차를 통해 지하수 개발가능량을 산정하는 기존 절차의 문제점을 제시할 수 있었다.

Keywords

References

  1. Chung, I.M., Kim, N.W. and Lee, J.W. (2007) Estimation of Groundwater Recharge by Considering Runoff Process and Groundwater Level Variation in Watershed, Journal of KOSSGE, 12(5), p. 19-32
  2. Hosking, J.R.M. (1990) L-moment: Analysis and Estimation of Distribution Using Linear Combination of Order Statistics, Journal of Royal Statistical Society, Series B. 52, p. 105-124
  3. Hosking, J.R.M. and Wallis, J.R. (1993) Some Statistics Useful in Regional Frequency Analysis, Water Resources Research, Vol. 29, No. 2, p. 271-281 https://doi.org/10.1029/92WR01980
  4. Hosking, J.R.M. and Wallis, J.R. (1997) Regional Frequency Analysis, An Approach Based on L-moment, Cambridge University Press
  5. Kim, N.W. and Won, Y.S. (2004) Estimates of Regional Flood Frequency in Korea, Journal of Korea Water Resources Association, Vol. 37, No. 12, pp. 1019-1032 https://doi.org/10.3741/JKWRA.2004.37.12.1019
  6. Kim, N.W., Lee, B.J. and Lee, J.E. (2006) An Evaluation of Snowmelt Effects Using SWAT in Chungju Dam Basin, Journal of Korea Water Resources Association, Vol. 39, No. 10, p. 833-844 https://doi.org/10.3741/JKWRA.2006.39.10.833
  7. Kim, N.W., Lee, B.J. and Lee, J.E. (2007) Analysis of the Characteristics of Low-flow Behavior Based on Spatial flows, J. of the Korean Society of Civil Engineers, Vol. 27, No. 4B, p. 431-440
  8. Korea Institute of Construction Technology (2007) Development of Analyzing System for Surface Hydrological Component, Ministry of Science and Technology
  9. Memon, B.A. (1995) Quantitative analysis of springs. Environmental Geology, Vol. 26, p. 111-120 https://doi.org/10.1007/BF00768324
  10. Ministry of Construction and Transporation (1996) Report on Basic Plan of Groundwater Management
  11. Ministry of Construction and Transporation (2002) Report on Basic Plan of Groundwater Management
  12. Neitsch, S.L., Arnold, J.G., Kiniry, J.R. and Williams J.R. (2001) Soil and Water Assessment Tool Theoretical Documentation, Ver. 2000