Development of Automatic Event Detection Algorithm for Groundwater Level Rise

지하수위 상승 자동 이벤트 감지 알고리즘 개발

  • Park, Jeong-Ann (Department of Rural Systems Engineering.Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Kim, Song-Bae (Department of Rural Systems Engineering.Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Kim, Min-Sun (Chunnam Techno College) ;
  • Kwon, Ku-Hung (Tuvics Company) ;
  • Choi, Nag-Choul (Institute of Industrial Technology, Chonnam National University)
  • 박정안 (서울대학교 지역시스템공학과/농업생명과학연구원) ;
  • 김성배 (서울대학교 지역시스템공학과/농업생명과학연구원) ;
  • 김민선 (전남과학대학) ;
  • 권구흥 (투빅스(주)) ;
  • 최낙철 (전남대학교 공업기술연구소)
  • Received : 2010.07.21
  • Accepted : 2010.09.13
  • Published : 2010.11.30

Abstract

The objective of this study was to develop automatic event detection algorithm for groundwater level rise. The groundwater level data and rainfall data in July and August at 37 locations nationwide were analyzed to develop the algorithm for groundwater level rise due to rainfall. In addition, the algorithm for groundwater level rise by ice melting and ground freezing was developed through the analysis of groundwater level data in January. The algorithm for groundwater level rise by rainfall was composed of three parts, including correlation between previous rainfall and groundwater level, simple linear regression analysis between previous rainfall and groundwater level, and diagnosis of groundwater level rise due to new rainfall. About 49% of the analyzed data was successfully simulated for groundwater level rise by rainfall. The algorithm for groundwater level rise due to ice melting and ground freezing included graphic analysis for groundwater level versus time (day), simple linear regression analysis for groundwater level versus time, and diagnosis of groundwater level rise by new ice melting and ground freezing. Around 37% of the analyzed data was successfully simulated for groundwater level rise due to ice melting and ground freezing. The algorithms from this study would help develop strategies for sustainable development and conservation of groundwater resources.

Keywords

References

  1. 국토해양부(2006). 수자원장기종합계획(2006-2020)보고서.
  2. 김용호, 이승현, 배상근(2006). 도서지역 지하수해안유출량의 평가. 공동추계학술발표회 논문집, 대한상하수도학회.한국물환경학회, pp.1115-1118.
  3. 안상도, 김경호(2000). 초정지역의 지하수 유동해석. 한국지하수환경학회지, 7(3), pp. 143-154.
  4. 앙정석, 김남기(2009). 융설효과와 한계침투량을 고려한 한강유역의 지하수위와 강우이동평균간의 상관관계. 지질공학회지, 19(3), pp. 313-321.
  5. 양정석, 안태연(2008). 한국 냥부지방의 강수량 이동평균과 지하수위의 상관관계. 지질공학회지, 18(4). pp. 393-403.
  6. 양정석, 임창화, 박재현, 박창근, 정교철(2005). 한계침투량을 고려한 쌍천유역의 강수량과 지하수위의 관계. 지질공학회지, 15(2), pp. 303-307.
  7. 이부용, 박병윤(1999). 부력추를 이용한 지하수위 측정용 센서개발. 한국농림기상학회지, 1(1), pp. 36-40.
  8. 이승욱(1993). 통계학의 이해, 자유아카데미.
  9. 환경부(2000). 환경백서.
  10. Guttman, N. B. (1999). Accepting the standardized predpita tion index: A calculation algorithm. Journal of thee American Water Resources Association, 35(2), pp. 311-322. https://doi.org/10.1111/j.1752-1688.1999.tb03592.x
  11. Wilhite, D. A. and Glantz, M. H. (1985). Understanding the Drought phenomenon : The Role of Definition. Water International, 10(3), pp. 111-120. https://doi.org/10.1080/02508068508686328
  12. Yamamoto, S. (1998). 지하수 수문학, 원기술.