• Title/Summary/Keyword: Ice melting

Search Result 105, Processing Time 0.025 seconds

Melting Heat Transfer of Liquid Ice in a Rectangular Vessel with Heated Top Wall (구형용기내 상부면가열에 의한 유동빙의 융해열전달)

  • 김명환;김경근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.1
    • /
    • pp.36-44
    • /
    • 1995
  • Melting characteristics of unrestrained liquid ice in a rectangular vessel with heated top wall were investigated experimentally. The liquid ice, a mixture of ice particles and ethylene-glycol aqueous solution, was adopted as a testing material. During the melting process the liquid ice was drawn by buoyancy to the heated top wall of the rectangular vessel where close-contact melting occured. The melting behavior and melting rate of the liquid ice as well as local/mean heat-transfer coefficient at the heated top wall were observed and measured under a variety of conditions of heat flux and various initial concentration of the aqueous binary solution. It was found that the heat transfer of the heated top wall is remarkably promoted by the close-contact melting, and that the dendritic frozen layer at the lower interface of the liquid ice is formed. Photographic evidence demonstrated that plumes containing solute-rich liquid issued from isolated chimneys within the liquid ice layer where segregation of interstitial channel took place.

  • PDF

An Experimental Study on Melting Process of Ice in a Rectangular Cavity with Different Wall Temperature (양벽온이 다른 장방형용기 내에서 얼음의 융해과정에 관한 실험적 연구)

  • Lim, W.T.;Kim, B.C.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.4
    • /
    • pp.547-555
    • /
    • 1995
  • Melting process of ice in a rectangular cavity with different temperature walls has been studied experimentally. Front shape of ice and melting rate were affected by initial temperature of ice and variation of temperature distribution and density gradient. When the hot wall temperature was below $8^{\circ}C$, the melting rates were higher at the bottom than those of at the top due to the density inversion, but with increasing the hot wall temperature the melting rates at the top were affected by hot wall and were higher than those of at the bottom. When the initial temperature of ice was low, melting rates were low, but with increasing the time melting rates were almost the same with those of each initial temperature of ice.

  • PDF

Review of the Melting of West Antarctic Ice Shelves in the Amundsen Sea and Its Influence: Research Issues and Scientific Questions (아문젠해 서남극 빙붕 용융과 영향에 대한 고찰: 연구동향 및 과학적 질문)

  • Seung-Tae Yoon
    • Ocean and Polar Research
    • /
    • v.45 no.3
    • /
    • pp.155-172
    • /
    • 2023
  • The collapse of ice shelves is a process that can severely increase the rise of global sea-levels through the reduction of the buttressing effect of ice shelves and the consequent acceleration of the ice flow of ice sheets. In recent years, the West Antarctic ice shelves in the Amundsen Sea, whose buttressing effect is essential for a great part of the West Antarctic ice sheet, have been experiencing the most rapid melting and thinning in the world. The melting of the West Antarctic ice shelves is caused primarily by heat transported by Circumpolar Deep Water (CDW). For this reason, it is important to investigate ice-ocean interactions that could influence the melting of ice shelves and evaluate the stability of West Antarctic ice shelves. A lot of researchers have been actively investigating the West Antarctic ice shelves in the Amundsen Sea. High-impact journals have recognized the importance of and published studies on ice-ocean interactions occurring near and under the ice shelves as well as the connections among ice shelves. However, in situ observations are limited due to extreme weather and sea-ice conditions near the ice shelves; therefore, many scientific questions remain unanswered. This study introduces the characteristics of the Amundsen Sea and investigate the past and latest research issues in this region. This study also gives suggestions regarding important scientific questions and directions for future research that should help early-career scientists take the lead in future research on the melting dynamics of the West Antarctic ice shelves in the Amundsen Sea.

Abnormal Winter Melting of the Arctic Sea Ice Cap Observed by the Spaceborne Passive Microwave Sensors

  • Lee, Seongsuk;Yi, Yu
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.305-311
    • /
    • 2016
  • The spatial size and variation of Arctic sea ice play an important role in Earth's climate system. These are affected by conditions in the polar atmosphere and Arctic sea temperatures. The Arctic sea ice concentration is calculated from brightness temperature data derived from the Defense Meteorological Satellite program (DMSP) F13 Special Sensor Microwave/Imagers (SSMI) and the DMSP F17 Special Sensor Microwave Imager/Sounder (SSMIS) sensors. Many previous studies point to significant reductions in sea ice and their causes. We investigated the variability of Arctic sea ice using the daily sea ice concentration data from passive microwave observations to identify the sea ice melting regions near the Arctic polar ice cap. We discovered the abnormal melting of the Arctic sea ice near the North Pole during the summer and the winter. This phenomenon is hard to explain only surface air temperature or solar heating as suggested by recent studies. We propose a hypothesis explaining this phenomenon. The heat from the deep sea in Arctic Ocean ridges and/or the hydrothermal vents might be contributing to the melting of Arctic sea ice. This hypothesis could be verified by the observation of warm water column structure below the melting or thinning arctic sea ice through the project such as Coriolis dataset for reanalysis (CORA).

Melting of Ice Inside a Horizontal Cylinder under the Volume Change (수평원관내 체적변화를 고려한 얼음의 용용시 전열특성에 관한 연구)

  • 조남철;김동춘;이채탈;임장순
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.12
    • /
    • pp.1266-1274
    • /
    • 2001
  • Heat transfer phenomena during melting process of the phase change material (ice) was studied by numerical analysis and experiments. In a horizontal ice storage tube, the natural convection caused an increase in melting rate. However, the reduction of the heating surface area caused a decrease in melting rate. Therefore, during the melting process of ice in a horizontal cylinder, the reduction of the heating surface area should be considered. Under the same heating wall and initial water temperature condition, the melting rate became higher for $V_s/V_tot/=0.545 \;than \;that\; for\; V_s/V_tot$/=1.00 due to the difference in the reduction of heating surface area. A modified melting model considering the equivalent thermal conductivity of liquid phase and volume reduction was proposed. The results of the model were compared with the measured values and found to be in good agreement.

  • PDF

Melting of ice on the heating plate with split fins (분할된 핀붙이 전열면상에서의 얼음의 용융)

  • 홍희기;김무근
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.1
    • /
    • pp.67-74
    • /
    • 2000
  • One of the important application of a contact melting process is a latent thermal energy storage owing to its high heat flux. In some previous works, the split fins have been employed in order to enhance the melting speed. In the present work, the close contact melting was experimentally investigated using an ice as specimen for both split and non-split fins. It was shown that the contact melting by split fins increases the melting rate compared to that of non-split ones.

  • PDF

A Experimental Study on the Ultrasonic Influence for Melting the Paraffin the Ice (초음파가 얼음과 파라핀 용해에 미치는 영향에 관한 실험적 연구)

  • 이재효;김태훈
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.11
    • /
    • pp.1106-1113
    • /
    • 2001
  • This paper presents experimental works on the ultrasonic influence during melting of ice and paraffin and compared the paraffin's result with ice's results. The experiments was carried out under two setting conditions.: 1) Heater without ultrasonic vibration, 2) heater with ultrasonic vibration. Experimental observations show that the ultrasonic vibration enhances significantly the phase-change process (melting) so that the melting time is reduced about 16∼25% compared to those of molting process without ultrasonics in the melting of both ice and paraffin. But the influence of ultrasonics was not significant to affect the reduction of the power consumption. In the case of paraffin, the reduction rate of power consumption was about 20%, but the reduction of the power consumption was increased about 0∼12%.

  • PDF

The Melting Process in an Ice-Ball Capsule (아이스볼내의 융해과정에 대한 해석)

  • Suh, J.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.4
    • /
    • pp.577-588
    • /
    • 1995
  • A numerical study is made on the melting process of an unconstrained ice inside an isothermal ice-ball capsule. The unmelted ice core is continuously ascending on account of buoyancy forces. Such a buoyancy-assisted melting is commonly characterized by the existence of a thin liquid film above the ice core. The present study is motivated to present a full-equation-based analysis of the influences of the initial subcooling and the natural convection on the fluid flow associated with the buoyancy-assisted melting. In the light of the solution strategy, the present study is substantially distinguished from the existing works in that the complete set of governing equations in both the melted and unmelted regions are resolved in one domain. Numerical results are obtained by varying the wall temperature and initial temperature. The present results reported the transition of the flow pattern in a spherical capsule, as the wall temperature was increased over the density inversion point. In addition, time wise variation of the shapes for the liquid film and the lower ice surface, the time rate of change in the melt volume fraction and the melting distance at symmetric line is analyzed and is presented.

  • PDF

An Experimental Study on the Melting of Horizontal Ice - Bar Located Concentrically in the Cylinder (수평원관속에 동심으로 놓여있는 얼음 봉의 융해현상에 관한 보험적 연구)

  • Lee, Dong-Wook;Yoo, Sang-Sin
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.15 no.2
    • /
    • pp.196-203
    • /
    • 1986
  • The melting phenomena of horizontal cylindrical ice-bar immersed in water and air concentrically in the cylinder are experimentally investigated for the temperature range from $3.5^{\circ}C\;to\;2.5^{\circ}C$. The shapes of the melting ice-bar are recorded photographically by the shadowgraph method. The shadowgraphs of the melting ice-bar show that water adjacent to the bar flows upward for the temperature range from $3.5^{\circ}C\;to\;5.8^{\circ}C$ while above $5.8^|\circ}C$ the flow is downward direction. The local and average Nusselt numbers are obtoined with the recorded shadowgraphs and comparator. Melting shapes of the ice-bar in the air show the vortex motion in the bottom portion of the bar, whereas no vortex motion appears in the bottom portion when the bar is melted in the water.

  • PDF

The Experimental Study on Heat Transfer during Melting Process in the Low Temperature Heat Storage System(Ice on Coil Type) (Ice on Coil형 저온 잠열 축열시스템에서의 용융과정시 열전달에 관한 실험적 연구)

  • Kim, Y.K.;Kim, D.C.;Kim, I.G.;Choi, K.K.;Yim, C.S.
    • Solar Energy
    • /
    • v.19 no.1
    • /
    • pp.19-27
    • /
    • 1999
  • In this study, basic design data which were required for development of highly efficient ice storage system with low temperature latent heat were experimentally obtained. The ice storage system considered in this study was the one that has been widely used in the developed country and called the ice-on-coil type. Using the system, the ice storage performance for various design parameters which were the flow direction and the inlet temperature of the secondary fluid was tested. In addition, the clockwise variation of the heat transfer characteristics of the PCM in the ice storage tank were investigated. During the melting processes in the ice storage tank with several vertical tubes, decrease of the solid-liquid interface area, which was the heat transfer area, between the floating ice and the water made the decreasing rate of IPF less. Also, the total melting energy for the upward flow of the secondary fluid was higher than that for the downward flow during the melting process, but this trend did not appear if the initial temperature of the PCM was $4^{\circ}C$. The average ice recovery efficiency for the upward flow of the secondary fluid was higher than that for the downward flow.

  • PDF