• Title/Summary/Keyword: grounding resistance

Search Result 246, Processing Time 0.025 seconds

Design and A Safety Analysis and Assessment of a Grounding System according to International Standards (국제 표준(IEC)에 의한 접지 설계 및 이에 대한 안전성 분석·평가)

  • Kim, Doo-Ung;Cho, Man-Hyung;Kim, Han-Soo;Shin, Dae-Sung;Ryu, Ki-Hwan;Kim, Chul-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.10
    • /
    • pp.54-59
    • /
    • 2015
  • In this paper, we evaluate safety of grounding system which is designed according to IEC standards. Safety assessment of construction site and grounding system of building is needed before construction for the safety of human in building. Until now, in case of domestic field, design of grounding system is proceeded based on methods which are proposed in IEEE Std. 80. In other words, it is not in the situation that grounding system is designed based on IEC standards. Therefore, we propose a method which designs grounding system and evaluates safety of it according to IEC standards. We measure ground resistance of construction site using measuring equipment of ground resistance. Using this value, soil structure and ground resistivity are obtained through program analysis. CDEGS program of SES company is used for simulation analysis.

Effects of the Position of Potential Probe on Ground Resistance Measurements Using the Fall-of-Potential Method (전위강하법에 의한 접지저항측정에 미치는 전위보조전극 위치의 영향)

  • 이복희;어주홍;김성원
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.2
    • /
    • pp.97-104
    • /
    • 2001
  • The effects of the position of potential probe on the measurements of the ground resistance in the fa11-of-potential method are described. The ground resistance is theoretically calculated by applying the 61.8[%] rule, and then the potential probe is located on the straight line between the grounding electrode to be measured and the current probe. However, sometimes the grounding electrode to be measured and the measuring potential and current probes in on-site test might not be arranged on the straight line with adequate distance because there are building, roadblock construction and other establishments. Provided that the grounding electrode to be measured and the measuring potential probes are out of position on the straight line, the measurement of the ground resistance classically falls into an error and the measured ground resistance should be corrected. In this work, measurements were focused on the grounding electrode system made by the ground rods of 2.4 m long. The measuring error was increased with increasing the angle which is made by the 3-points of the grounding electrode to be measured, the potential anti current probes, and it was a negative. That is, all of the measured ground resistances ware less than the true ground resistance.

  • PDF

A Study on the Grounding Resistance Effects of Lightning Arrester for Lightning Stroke Protection in Electric Distribution Systems (배전계통에서 낙뢰보호용 피뢰기의 접지저항 영향에 관한 연구)

  • Kim, Kyung-Chul;Jung, Ji-Won;Lee, Kyu-Jin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.6
    • /
    • pp.107-114
    • /
    • 2010
  • Lightning is the discharging of high-voltage charged cells within clouds to earth other or to the earth. Lightning protection grounding is essential for the protection of buildings, distribution lines, and electrical equipment from lightning surges. Equipment grounding is for the purpose of controlling the voltage to earth within predictable limits. This paper investigates the effects of lightning arrester grounding resistance by analysing the neutral to earth voltages and arrester break down voltages when the lightning strike hits the distribution line. The case study was simulated numerically and graphically through the use of the EDSA software program.

Grounding Characteristics Analysis of the Stainless-steel Plate Grounding Electrode for Distribution Poles (배전전주용 스테인리스강판 접지전극의 접지 특성분석)

  • Kim, Kyung-Chul;Lee, Kyu-Jin;Kim, Min-Sung;Jung, Ji-Won
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.8
    • /
    • pp.94-100
    • /
    • 2010
  • Grounding system insures a reference potential point for electric devices and also provides a low impedance path for fault currents or transient currents in the earth. The ground impedance as function of frequency is necessary for determining its performance since fault currents could contain a wide range of frequencies. In this paper, the grounding resistance, grounding impedance and transient grounding impedance are measured by using 3-point fall-of-potential method in order to analyse grounding characteristics of the stainless-steel plate grounding electrode. An equivalent transfer function model of the grounding impedance and transient grounding impedance are identified from the measured values by using ARMA method and evaluated by comparing conventional grounding impedances.

Transient Impedance Characteristics of Grounding Rods (봉상접지극의 과도임피던스 특성)

  • 김일권;송재용;길경석;권장우
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.1
    • /
    • pp.133-143
    • /
    • 2001
  • This paper describes the correlation of the transient impedance and its parameters with the stationary resistance of a grounding system to a square pulse current and a lightning impulse current. In the experiment, the grounding system consists of a single grounding rod$(\Psi10[mm], 1[m])$and/or a triple-grounding rods of equilateral triangles with 5[m] spacing for operation. To analyze the transient impedance characteristics of the grounding system, a pulse generator which can produce square wave of a 30[ns] rise-time and a $20[\mus] $pulse duration is designed and fabricated. The injected content in the grounding system and the developed potential were recorded, and the time variation of the transient impedance were calculated as the ratio of the potential rising to the injected current at each time. The transient impedance and the effective surge impedance Z3 which defines economic protection level in power system were quite higher than the stationary resistance. The grounding impedance is decreased by the application of the triple-rods grounding system, and its effect is decreased as the frequency of the current is increased due to the inductance of the grounding leads.

  • PDF

Make-up of Equivalent Circuit of Grounding System using Water Resistivity in Hemispherical Electrode System (반구형 전극계에서 물의 저항률을 이용한 접지시스템의 등가회로 구성)

  • Lee, Bok-Hee;Choi, Jong-Hyuk;Bae, Sung-Bae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.8
    • /
    • pp.109-115
    • /
    • 2008
  • A design criterion of grounding systems is commonly based on the ground resistance measured with low frequency in Korea. When lightning surges which have high frequency components are injected into the grounding system, the grounding impedance is great]y different from the static grounding resistance. In order to investigate the effect of water resistivity on the high frequency performance of grounding systems, this paper presents the frequency-dependent admittance using water tank simulating the grounding system in different water resistivities. As a result, because of capacitive effect admittances and conductance are increased with increasing frequency in higher water resistivity of greater than 500[${\Omega}{\cdot}m$]. On the other hand, admittances and conductances are decreased with increasing frequency due to inductive effect in lower water resistivity of less than 500[${\Omega}{\cdot}m$]. The phase difference between the current and voltage increases in the range of 200[kHz] to 5[MHz]. Consequently, frequency-dependent performance of grounding systems is closely related to the soil resistivity, it is necessary to consider the effect of grounding system performance on the frequency and soil resistivity.

Measurement method of ground impedance for the grounding grid (접지그리드의 접지임피던스 측정 기법)

  • Lee, Bok-Hee;Choi, Jong-Hyuk;Choi, Young-Chul;Yoo, Jae-Duk;Beak, Young-Hwan;Kim, Dong-Seong;Shin, Hee-Kyung;Yoo, Yang-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1487_1488
    • /
    • 2009
  • In these days, the common grounding systems are adapted in most large structures. In order to evaluate the performance of grounding system, it is needed to measure ground impedance. Measuring methods of ground impedance for a large scale grounding systems have not been yet presented in detail. In this paper, we analyze earth mutual resistance and mutual coupling of $15{\times}15m$ grounding grid in different arrangements of auxiliary electrode. As a results, the auxiliary electrodes are installed where the error rate due to earth mutual resistance is less than 5%. Also, the potential lead is installed at obtuse angle from the current lead and the overlapped length between potential lead and grounding grid are minimized.

  • PDF

Research on Grounding Resistance for the Grounding Plate Electrodes (각판상전극의 접지저항에 관한 연구)

  • Koh, Hee-Seog;Shin, Su-Han;Kim, Ju-Chan;Choi, Jong-Gyu
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.111-114
    • /
    • 2004
  • There are many electricity, electronics, and communication equipment which need to Grounding in the building. When electric current flows into a certain Grounding system in the same building, the potential of other Grounding system rises. This potential interference repuire surface potential of electrods by electrode shape. In this paper basic formula is deduced on the basis of both electrodes surface potential of Grounding electrode as a source of the potential interference and Grounding electrode which receive the potential interference. The degree of potential interference as multiple Grounding electrode is verified the simulated results by means of the simple model in advance.

  • PDF

Analysis for the impulsive impedance of counterpoise (매설지선의 임펄스임피던스의 해석)

  • Joe, Jeong-Hyeon;Kim, Jong-Ho;Beak, Young-Hwan;Kim, Dong-Seong;Lee, Gang-Su;Kim, Ki-Bok;Lee, Bok-Hee
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.88-91
    • /
    • 2009
  • For lightning currents, a grounding system shows the transient grounding impedance characteristics. A grounding system for protection against lightning should be evaluated by the transient grounding impedance, not it's ground resistance. The transient grounding impedance varies with the shape of ground electrode and earth characteristics as well as the waveform of lightning surge current. For the analysis and practical use of transient grounding impedance, the characteristics of transient grounding impedance should be analyzed theoretically and this paper suggests the theoretical analysis for the transient grounding impedance of counterpoise by using the distributed parameter circuit model. EMTP and Matlab are used to simulate the distributed parameter circuit model of counterpoise and the adequacy of the distributed parameter model of counterpoise is examined by comparing the simulated results with the measured results.

  • PDF

Evaluation of the Accuracy of Grounding Impedance Measurement of Grounding Grid (접지그리드의 접지임피던스 측정의 정확도 평가)

  • Choi, Jong-Hyuk;Choi, Young-Chul;Jeong, Dong-Cheol;Kim, Dong-Seong;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.12
    • /
    • pp.146-153
    • /
    • 2009
  • Recently, the common grounding systems are adapted in most large structures. Since the ground resistance is insufficient to evaluate the performance of grounding systems, it is needed to measure grounding impedance. Even though the methods of measuring grounding impedance of large grounding systems are presented in IEEE standard 81.2, but they have not been described in detail. In this paper, we present the accurate method of measuring grounding impedance based on the revised fall-of-potential method and measurement errors due to earth mutual resistance and ac mutual coupling depending on locating test electrodes at remote earth were examined for the 15[m]$\times$15[m] grounding grid. As a result, the measurement error due to earth mutual resistance is decreased when the distance to auxiliary electrodes increased. To get rid of measurement errors due to mutual coupling, the potential lead should be installed at a right angle to the current lead. When the angle between the potential and the current leads is an acute angle or an obtuse angle, the mutual couple voltage is positive or negative, respectively. Generally, the measurement errors due to mutual coupling with an obtuse angle route are lower than those with an acute angle route.