• Title/Summary/Keyword: grid-connected inverter

Search Result 503, Processing Time 0.038 seconds

An Active Feedforward Compensation for a Current Harmonics Reduction in Three-phase Grid-connected Inverters (3상 계통 연계형 인버터에서의 전류 고조파 감쇄를 위한 능동형 피드포워드 보상 기법)

  • Park, Byong-Jun;Kim, Rae-Young;Choi, Ki-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • This paper proposes a current harmonic compensation method for the grid-connected inverter, especially caused by the grid impedance. Grid impedance causes low order harmonics in the grid current and deteriorates power quality. This paper analyzes the negative impact of the grid impedance, and proposes an active feedforward compensation method. Proposing method verified through simulation and experiment with 3-phase 1.5kW voltage source inverter prototype.

Control of an Open Winding Machine in a Grid-Connected Distributed Generation System (오픈 와인딩 머신을 이용한 계통 연계형 분산 발전 시스템의 제어)

  • Kwak, Mu-Shin;Sui, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.83-86
    • /
    • 2006
  • A grid-connected distributed generation system which consists of engine generator, dc link with multiple energy sources and inverter is proposed. All six of the stator leads of the generator, which is a surface mount permanent magnet machine, are brought out to the terminal of the generator. Three leads are connected to the inverter and the others are connected to the utility grid. In this proposed system the power from the engine-generator and the power from dc link can be controlled simultaneously by only one three-phase power converter. A control algorithm for the system is developed and verified by experiment results.

  • PDF

Sensorless Active Damping Method for an LCL Filter in Grid-Connected Parallel Inverters for Battery Energy Storage Systems

  • Sung, Won-Yong;Ahn, Hyo Min;Ahn, Jung-Hoon;Lee, Byoung Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.280-286
    • /
    • 2018
  • A sensorless active damping scheme for LCL filters in grid-connected parallel inverters for battery energy storage systems is proposed. This damping method is superior to the conventional notch filter and virtual damping methods with respect to robustness against the variation of the resonance of the filter and unnecessary additional current sensors. The theoretical analysis of the proposed damping method is explained in detail, along with the characteristic comparison to the conventional active damping methods. The performance verification of the proposed sensorless active damping method shows that its performance is comparable to that of the conventional virtual damping method, even without additional current sensors. Finally, simulation and experimental results are provided to examine the overall characteristics of the proposed method.

A Novel Three-Phase Four-Wire Grid-Connected Synchronverter that Mimics Synchronous Generators

  • Tan, Qian;Lv, Zhipeng;Xu, Bei;Jiang, Wenqian;Ai, Xin;Zhong, Qingchang
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2221-2230
    • /
    • 2016
  • Voltage and frequency stability issues occur in existing centralized power system due to the high penetration of renewable energy sources, which decrease grid absorptive capacity of them. The grid-connected inverter that mimics synchronous generator characteristics with inertia characteristic is beneficial to electric power system stability. This paper proposed a novel three-phase four-wire grid-connected inverter with an independent neutral line module that mimics synchronous generators. A mathematical model of the synchronous generator and operation principles of the synchronverter are introduced. The main circuit and control parameters design procedures are also provided in detail. A 10 kW prototype is built and tested for further verification. The primary frequency modulation and primary voltage regulation characteristics of the synchronous generator are emulated and automatically adjusted by the proposed circuit, which helps to supports the grid.

Reactive Power P&O Islanding Detection Method using Positive Feedback (Positive Feedback을 이용한 무효전력 P&O 단독운전 검출기법)

  • Lee, Jong-Won;Park, Sung-Youl;Lee, Jae-Yeon;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.5
    • /
    • pp.410-416
    • /
    • 2022
  • A grid-connected inverter with critical loads uses mode transfer control to supply stable voltage to the load. An islanding detection method should also be used to quickly detect the grid fault and disconnect the inverter from the grid. However using the existing islanding detection method to detect islanding is difficult due to the small fluctuation of the voltage and frequency of the point of common coupling. This study proposes a reactive power P&O islanding detection method by using the positive feedback technique. The proposed method always injects a small variation of reactive power. When a grid fault occurs, the injected reactive power accelerates the reactive power injection reference. As a result, the reactive power reference value and the sensed reactive power become mismatched, and islanding is detected. Reducing the amount of real-time injected reactive power results in high efficiency and power factor. The simulation and experimental results of a 3 kW single-phase inverter are provided to verify the proposed islanding detection method.

Research on grid connected 3-phase inverter appling repetitive controller in d-q axis (d-q축에서 반복제어기를 적용한 3상 계통연계형 인버터연구)

  • Lim, J.W.;Cho, Y.H.;Cheo, G.H.
    • Proceedings of the KIPE Conference
    • /
    • 2015.11a
    • /
    • pp.151-152
    • /
    • 2015
  • This paper is research on design controller of grid connected 3-phase inverter. It confirms effects of high harmonics on controller and imposes repetitive controller to minimize effects on the high harmonics. The result of test in this paper is drawn by simulation tool.

  • PDF

Equivalent Grid Impedance Estimation Method Using Negative Sequence Current Injection in Three-Phase Grid-connected Inverter (3상 계통 연계형 인버터의 역상분 전류 주입을 이용한 계통 등가 임피던스 추정 기법)

  • Park, Chan-Sol;Song, Seung-Ho;Im, Ji-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.6
    • /
    • pp.526-533
    • /
    • 2015
  • A new algorithm is proposed for the estimation of equivalent grid impedance at the point of common coupling of a grid-tie inverter output. The estimated impedance parameter can be used for the improvement of the performance and the stability of the distributed generation system. The estimation error is inevitable in the conventional estimation method because of the axis rotation due to PLL. In the conventional estimation error, the d-q voltage and current are used for the calculation of the impedance with active and reactive current injections. Conversely, in the proposed algorithm, the negative sequence current is injected, and then the negative sequence voltage is measured for the impedance estimation. As the positive and negative sequence current controller is independent and the PLL is based on the positive sequence component only, the estimation of the equivalent impedance can be achieved with high accuracy. Simulation and experimental results are compared to validate the proposed algorithm.

Control Strategy Design of Grid-Connected and Stand-Alone Single-Phase Inverter for Distributed Generation

  • Cai, Fenghuang;Lu, Dexiang;Lin, Qiongbin;Wang, Wu
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1813-1820
    • /
    • 2016
  • Dual-mode photovoltaic power system should be capable of operating in grid-connected (GC) and stand-alone (SA) modes for distributed generation. Under different working modes, the optimal parameters of inverter output filters vary. Inverters commonly operate in GC mode, and thus, a small capacitance is beneficial to the GC topology for achieving a reasonable compromise. A predictive current control scheme is proposed to control the grid current in GC mode and thereby obtain high-performance power. As filter are not optimal under SA mode, a compound control strategy consisting of predictive current control, instantaneous voltage control, and repetitive control is proposed to achieve low total harmonic distortion and improve the output voltage spectrum. The seamless transfer between GC mode and SA mode is illustrated in detail. Finally, the simulation and experimental results of a 4 kVA prototype demonstrate the effectiveness of the proposed control strategy.

Seamless Transfer of Single-Phase Utility Interactive Inverters with a Synchronized Output Regulation Strategy

  • Xiang, Ji;Ji, Feifan;Nian, Heng;Zhang, Junming;Deng, Hongqiao
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1821-1832
    • /
    • 2016
  • This study presents a strategy using the synchronized output regulation method (SOR) for controlling inverters operating in stand-alone and grid-connected modes. From the view point of networked dynamic systems, SOR involves nodes with outputs that are synchronized but also display a desirable wave shape. Under the SOR strategy, the inverter and grid are treated as two nodes that comprise a simple network. These two nodes work independently under the stand-alone mode. An intermediate mode, here is named the synchronization mode, is emphasized because the transition from the stand-alone mode to the grid-connected mode can be dealt as a standard SOR problem. In the grid-connected mode, the inverter operates in an independent way, in which the voltage reference changes for generalized synchronization where its output current satisfies the required power injection. Such a relatively independent design leads to a seamless transfer between operation modes. The closed-loop system is analyzed in the state space on the basis of the output regulation theory, which improves the robustness of the design. Simulations and experiments are performed to verify the proposed control strategy.

Highly Efficient MOSFET Inverter for Single-Phase Grid-Connected Photovoltaic Power Generation Systems (단상 계통연계형 태양광 발전 시스템용 고효율 MOSFET 인버터)

  • Ryu, Hyung-Min
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.227-232
    • /
    • 2014
  • A highly efficient MOSFET inverter for single-phase grid-connected photovoltaic power generation systems is presented in this paper. It is a full-MOSFET version of the conventional transformerless full-bridge inverter with dual L-C filters using unipolar PWM. The key idea lies on smart pre switching(SPS), which can make the large switching loss due to a poor reverse recovery of the MOSFET's body diode reduced dramatically. The validity of the proposed inverter is verified by experiment.